
SAS/STAT® 14.1 User’s Guide
The POWER Procedure



This document is an individual chapter from SAS/STAT® 14.1 User’s Guide.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2015. SAS/STAT® 14.1 User’s Guide. Cary, NC:
SAS Institute Inc.

SAS/STAT® 14.1 User’s Guide

Copyright © 2015, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute
Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time
you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is
illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic
piracy of copyrighted materials. Your support of others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software
developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or
disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as
applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S.
federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision
serves as notice under clause (c) thereof and no other notice is required to be affixed to the Software or documentation. The
Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

July 2015

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.



Chapter 89

The POWER Procedure

Contents
Overview: POWER Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7110
Getting Started: POWER Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7111

Computing Power for a One-Sample t Test . . . . . . . . . . . . . . . . . . . . . . . 7111
Determining Required Sample Size for a Two-Sample t Test . . . . . . . . . . . . . . 7114

Syntax: POWER Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7119
PROC POWER Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7120
COXREG Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7120

Summary of Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7120
Dictionary of Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7121
Restrictions on Option Combinations . . . . . . . . . . . . . . . . . . . . . 7124
Option Groups for Common Analyses . . . . . . . . . . . . . . . . . . . . . 7124

LOGISTIC Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7124
Summary of Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7125
Dictionary of Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7126
Restrictions on Option Combinations . . . . . . . . . . . . . . . . . . . . . 7130
Option Groups for Common Analyses . . . . . . . . . . . . . . . . . . . . . 7131

MULTREG Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7132
Summary of Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7132
Dictionary of Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7133
Restrictions on Option Combinations . . . . . . . . . . . . . . . . . . . . . 7136
Option Groups for Common Analyses . . . . . . . . . . . . . . . . . . . . . 7136

ONECORR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7137
Summary of Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7137
Dictionary of Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7138
Option Groups for Common Analyses . . . . . . . . . . . . . . . . . . . . . 7140

ONESAMPLEFREQ Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7140
Summary of Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7140
Dictionary of Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7142
Option Groups for Common Analyses . . . . . . . . . . . . . . . . . . . . . 7146
Restrictions on Option Combinations . . . . . . . . . . . . . . . . . . . . . 7148

ONESAMPLEMEANS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7148
Summary of Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7148
Dictionary of Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7150
Restrictions on Option Combinations . . . . . . . . . . . . . . . . . . . . . 7153
Option Groups for Common Analyses . . . . . . . . . . . . . . . . . . . . . 7153

ONEWAYANOVA Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7155



7108 F Chapter 89: The POWER Procedure

Summary of Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7155
Dictionary of Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7156
Restrictions on Option Combinations . . . . . . . . . . . . . . . . . . . . . 7158
Option Groups for Common Analyses . . . . . . . . . . . . . . . . . . . . . 7158

PAIREDFREQ Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7160
Summary of Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7160
Dictionary of Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7161
Restrictions on Option Combinations . . . . . . . . . . . . . . . . . . . . . 7164
Option Groups for Common Analyses . . . . . . . . . . . . . . . . . . . . . 7164

PAIREDMEANS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7166
Summary of Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7167
Dictionary of Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7168
Restrictions on Option Combinations . . . . . . . . . . . . . . . . . . . . . 7172
Option Groups for Common Analyses . . . . . . . . . . . . . . . . . . . . . 7173

PLOT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7175
Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7176

TWOSAMPLEFREQ Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7179
Summary of Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7180
Dictionary of Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7181
Restrictions on Option Combinations . . . . . . . . . . . . . . . . . . . . . 7184
Option Groups for Common Analyses . . . . . . . . . . . . . . . . . . . . . 7185

TWOSAMPLEMEANS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 7187
Summary of Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7187
Dictionary of Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7189
Restrictions on Option Combinations . . . . . . . . . . . . . . . . . . . . . 7193
Option Groups for Common Analyses . . . . . . . . . . . . . . . . . . . . . 7194

TWOSAMPLESURVIVAL Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 7196
Summary of Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7196
Dictionary of Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7198
Restrictions on Option Combinations . . . . . . . . . . . . . . . . . . . . . 7204
Option Groups for Common Analyses . . . . . . . . . . . . . . . . . . . . . 7205

TWOSAMPLEWILCOXON Statement . . . . . . . . . . . . . . . . . . . . . . . . . 7208
Summary of Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7208
Dictionary of Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7209
Restrictions on Option Combinations . . . . . . . . . . . . . . . . . . . . . 7212
Option Groups for Common Analyses . . . . . . . . . . . . . . . . . . . . . 7212

Details: POWER Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7213
Overview of Power Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7213
Summary of Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7214
Specifying Value Lists in Analysis Statements . . . . . . . . . . . . . . . . . . . . . 7216

Keyword-Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7216
Number-Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7216
Grouped-Number-Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7216
Name-Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7218



The POWER Procedure F 7109

Grouped-Name-Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7218
Sample Size Adjustment Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7219
Error and Information Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7219
Displayed Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7221
ODS Table Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7221
Computational Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7222

Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7222
CPU Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7222

Computational Methods and Formulas . . . . . . . . . . . . . . . . . . . . . . . . . 7222
Common Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7223
Analyses in the COXREG Statement . . . . . . . . . . . . . . . . . . . . . . 7224
Analyses in the LOGISTIC Statement . . . . . . . . . . . . . . . . . . . . . 7225
Analyses in the MULTREG Statement . . . . . . . . . . . . . . . . . . . . . 7228
Analyses in the ONECORR Statement . . . . . . . . . . . . . . . . . . . . . 7230
Analyses in the ONESAMPLEFREQ Statement . . . . . . . . . . . . . . . . 7232
Analyses in the ONESAMPLEMEANS Statement . . . . . . . . . . . . . . 7250
Analyses in the ONEWAYANOVA Statement . . . . . . . . . . . . . . . . . 7254
Analyses in the PAIREDFREQ Statement . . . . . . . . . . . . . . . . . . . 7255
Analyses in the PAIREDMEANS Statement . . . . . . . . . . . . . . . . . . 7259
Analyses in the TWOSAMPLEFREQ Statement . . . . . . . . . . . . . . . 7263
Analyses in the TWOSAMPLEMEANS Statement . . . . . . . . . . . . . . 7268
Analyses in the TWOSAMPLESURVIVAL Statement . . . . . . . . . . . . 7274
Analyses in the TWOSAMPLEWILCOXON Statement . . . . . . . . . . . . 7278

ODS Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7280
Examples: POWER Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7281

Example 89.1: One-Way ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7281
Example 89.2: The Sawtooth Power Function in Proportion Analyses . . . . . . . . . 7286
Example 89.3: Simple AB/BA Crossover Designs . . . . . . . . . . . . . . . . . . . 7295
Example 89.4: Noninferiority Test with Lognormal Data . . . . . . . . . . . . . . . . 7298
Example 89.5: Multiple Regression and Correlation . . . . . . . . . . . . . . . . . . 7302
Example 89.6: Comparing Two Survival Curves . . . . . . . . . . . . . . . . . . . . 7306
Example 89.7: Confidence Interval Precision . . . . . . . . . . . . . . . . . . . . . . 7308
Example 89.8: Customizing Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7311

Assigning Analysis Parameters to Axes . . . . . . . . . . . . . . . . . . . . 7312
Fine-Tuning a Sample Size Axis . . . . . . . . . . . . . . . . . . . . . . . . 7317
Adding Reference Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7321
Linking Plot Features to Analysis Parameters . . . . . . . . . . . . . . . . . 7324
Choosing Key (Legend) Styles . . . . . . . . . . . . . . . . . . . . . . . . . 7329
Modifying Symbol Locations . . . . . . . . . . . . . . . . . . . . . . . . . . 7333

Example 89.9: Binary Logistic Regression with Independent Predictors . . . . . . . . 7335
Example 89.10: Wilcoxon-Mann-Whitney Test . . . . . . . . . . . . . . . . . . . . . 7337

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7340



7110 F Chapter 89: The POWER Procedure

Overview: POWER Procedure
Power and sample size analysis optimizes the resource usage and design of a study, improving chances of
conclusive results with maximum efficiency. The POWER procedure performs prospective power and sample
size analyses for a variety of goals, such as the following:

� determining the sample size required to get a significant result with adequate probability (power)

� characterizing the power of a study to detect a meaningful effect

� conducting what-if analyses to assess sensitivity of the power or required sample size to other factors

Here prospective indicates that the analysis pertains to planning for a future study. This is in contrast to
retrospective power analysis for a past study, which is not supported by the procedure.

A variety of statistical analyses are covered:

� t tests, equivalence tests, and confidence intervals for means

� tests, equivalence tests, and confidence intervals for binomial proportions

� multiple regression

� tests of correlation and partial correlation

� one-way analysis of variance

� rank tests for comparing two survival curves

� Cox proportional hazards regression

� logistic regression with binary response

� Wilcoxon-Mann-Whitney (rank-sum) test

For more complex linear models, see Chapter 48, “The GLMPOWER Procedure.”

Input for PROC POWER includes the components considered in study planning:

� design

� statistical model and test

� significance level (alpha)

� surmised effects and variability

� power

� sample size
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You designate one of these components by a missing value in the input, in order to identify it as the result
parameter. The procedure calculates this result value over one or more scenarios of input values for all other
components. Power and sample size are the most common result values, but for some analyses the result can
be something else. For example, you can solve for the sample size of a single group for a two-sample t test.

In addition to tabular results, PROC POWER produces graphs. You can produce the most common types of
plots easily with default settings and use a variety of options for more customized graphics. For example,
you can control the choice of axis variables, axis ranges, number of plotted points, mapping of graphical
features (such as color, line style, symbol and panel) to analysis parameters, and legend appearance.

If ODS Graphics is enabled, then PROC POWER uses ODS Graphics to create graphs; otherwise, traditional
graphs are produced.

For more information about enabling and disabling ODS Graphics, see the section “Enabling and Disabling
ODS Graphics” on page 609 in Chapter 21, “Statistical Graphics Using ODS.”

For specific information about the statistical graphics and options available with the POWER procedure, see
the PLOT statement and the section “ODS Graphics” on page 7280.

The POWER procedure is one of several tools available in SAS/STAT software for power and sample size
analysis. PROC GLMPOWER supports more complex linear models. The Power and Sample Size application
provides a user interface and implements many of the analyses supported in the procedures. See Chapter 48,
“The GLMPOWER Procedure,” and Chapter 90, “The Power and Sample Size Application,” for details.

The following sections of this chapter describe how to use PROC POWER and discuss the underlying
statistical methodology. The section “Getting Started: POWER Procedure” on page 7111 introduces PROC
POWER with simple examples of power computation for a one-sample t test and sample size determination
for a two-sample t test. The section “Syntax: POWER Procedure” on page 7119 describes the syntax of the
procedure. The section “Details: POWER Procedure” on page 7213 summarizes the methods employed by
PROC POWER and provides details on several special topics. The section “Examples: POWER Procedure”
on page 7281 illustrates the use of the POWER procedure with several applications.

For an overview of methodology and SAS tools for power and sample size analysis, see Chapter 18,
“Introduction to Power and Sample Size Analysis.” For more discussion and examples, see O’Brien and
Castelloe (2007); Castelloe (2000); Castelloe and O’Brien (2001); Muller and Benignus (1992); O’Brien and
Muller (1993); Lenth (2001).

Getting Started: POWER Procedure

Computing Power for a One-Sample t Test
Suppose you want to improve the accuracy of a machine used to print logos on sports jerseys. The logo
placement has an inherently high variability, but the horizontal alignment of the machine can be adjusted. The
operator agrees to pay for a costly adjustment if you can establish a nonzero mean horizontal displacement in
either direction with high confidence. You have 150 jerseys at your disposal to measure, and you want to
determine your chances of a significant result (power) by using a one-sample t test with a two-sided ˛ = 0.05.



7112 F Chapter 89: The POWER Procedure

You decide that 8 mm is the smallest displacement worth addressing. Hence, you will assume a true mean of
8 in the power computation. Experience indicates that the standard deviation is about 40.

Use the ONESAMPLEMEANS statement in the POWER procedure to compute the power. Indicate power
as the result parameter by specifying the POWER= option with a missing value (.). Specify your conjectures
for the mean and standard deviation by using the MEAN= and STDDEV= options and for the sample size by
using the NTOTAL= option. The statements required to perform this analysis are as follows:

proc power;
onesamplemeans

mean = 8
ntotal = 150
stddev = 40
power = .;

run;

Default values for the TEST=, DIST=, ALPHA=, NULLMEAN=, and SIDES= options specify a two-sided t
test for a mean of 0, assuming a normal distribution with a significance level of ˛ = 0.05.

Figure 89.1 shows the output.

Figure 89.1 Sample Size Analysis for One-Sample t Test

The POWER Procedure
One-Sample t Test for Mean

The POWER Procedure
One-Sample t Test for Mean

Fixed Scenario Elements

Distribution Normal

Method Exact

Mean 8

Standard Deviation 40

Total Sample Size 150

Number of Sides 2

Null Mean 0

Alpha 0.05

Computed
Power

Power

0.682

The power is about 0.68. In other words, there is about a 2/3 chance that the t test will produce a significant
result demonstrating the machine’s average off-center displacement. This probability depends on the
assumptions for the mean and standard deviation.

Now, suppose you want to account for some of your uncertainty in conjecturing the true mean and standard
deviation by evaluating the power for four scenarios, using reasonable low and high values, 5 and 10 for the
mean, and 30 and 50 for the standard deviation. Also, you might be able to measure more than 150 jerseys,
and you would like to know under what circumstances you could get by with fewer. You want to plot power
for sample sizes between 100 and 200 to visualize how sensitive the power is to changes in sample size for
these four scenarios of means and standard deviations. The following statements perform this analysis:
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ods graphics on;

proc power;
onesamplemeans

mean = 5 10
ntotal = 150
stddev = 30 50
power = .;

plot x=n min=100 max=200;
run;

ods graphics off;

The new mean and standard deviation values are specified by using the MEAN= and STDDEV= options in
the ONESAMPLEMEANS statement. The PLOT statement with X=N produces a plot with sample size on
the X axis. (The result parameter, in this case the power, is always plotted on the other axis.) The MIN= and
MAX= options in the PLOT statement determine the sample size range. The ODS GRAPHICS ON statement
enables ODS Graphics.

Figure 89.2 shows the output, and Figure 89.3 shows the plot.

Figure 89.2 Sample Size Analysis for One-Sample t Test with Input Ranges

The POWER Procedure
One-Sample t Test for Mean

The POWER Procedure
One-Sample t Test for Mean

Fixed Scenario Elements

Distribution Normal

Method Exact

Total Sample Size 150

Number of Sides 2

Null Mean 0

Alpha 0.05

Computed Power

Index Mean
Std
Dev Power

1 5 30 0.527

2 5 50 0.229

3 10 30 0.982

4 10 50 0.682
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Figure 89.3 Plot of Power versus Sample Size for One-Sample t Test with Input Ranges

The power ranges from about 0.23 to 0.98 for a sample size of 150 depending on the mean and standard
deviation. In Figure 89.3, the line style identifies the mean, and the plotting symbol identifies the standard
deviation. The locations of plotting symbols indicate computed powers; the curves are linear interpolations
of these points. The plot suggests sufficient power for a mean of 10 and standard deviation of 30 (for any of
the sample sizes) but insufficient power for the other three scenarios.

Determining Required Sample Size for a Two-Sample t Test
In this example you want to compare two physical therapy treatments designed to increase muscle flexibility.
You need to determine the number of patients required to achieve a power of at least 0.9 to detect a group
mean difference in a two-sample t test. You will use ˛ = 0.05 (two-tailed).

The mean flexibility with the standard treatment (as measured on a scale of 1 to 20) is well known to be about
13 and is thought to be between 14 and 15 with the new treatment. You conjecture three alternative scenarios
for the means:
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1. �1 = 13, �2 = 14

2. �1 = 13, �2 = 14.5

3. �1 = 13, �2 = 15

You conjecture two scenarios for the common group standard deviation:

1. � = 1.2

2. � = 1.7

You also want to try three weighting schemes:

1. equal group sizes (balanced, or 1:1)

2. twice as many patients with the new treatment (1:2)

3. three times as many patients with the new treatment (1:3)

This makes 3 � 2 � 3 = 18 scenarios in all.

Use the TWOSAMPLEMEANS statement in the POWER procedure to determine the sample sizes required
to give 90% power for each of these 18 scenarios. Indicate total sample size as the result parameter by
specifying the NTOTAL= option with a missing value (.). Specify your conjectures for the means by using
the GROUPMEANS= option. Using the “matched” notation (discussed in the section “Specifying Value
Lists in Analysis Statements” on page 7216), enclose the two group means for each scenario in parentheses.
Use the STDDEV= option to specify scenarios for the common standard deviation. Specify the weighting
schemes by using the GROUPWEIGHTS= option. You could again use the matched notation. But for
illustrative purposes, specify the scenarios for each group weight separately by using the “crossed” notation,
with scenarios for each group weight separated by a vertical bar (|). The statements that perform the analysis
are as follows:

proc power;
twosamplemeans

groupmeans = (13 14) (13 14.5) (13 15)
stddev = 1.2 1.7
groupweights = 1 | 1 2 3
power = 0.9
ntotal = .;

run;

Default values for the TEST=, DIST=, NULLDIFF=, ALPHA=, and SIDES= options specify a two-sided t
test of group mean difference equal to 0, assuming a normal distribution with a significance level of ˛ = 0.05.
The results are shown in Figure 89.4.
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Figure 89.4 Sample Size Analysis for Two-Sample t Test Using Group Means

The POWER Procedure
Two-Sample t Test for Mean Difference

The POWER Procedure
Two-Sample t Test for Mean Difference

Fixed Scenario
Elements

Distribution Normal

Method Exact

Group 1 Weight 1

Nominal Power 0.9

Number of Sides 2

Null Difference 0

Alpha 0.05

Computed N Total

Index Mean1 Mean2
Std
Dev Weight2

Actual
Power

N
Total

1 13 14.0 1.2 1 0.907 64

2 13 14.0 1.2 2 0.908 72

3 13 14.0 1.2 3 0.905 84

4 13 14.0 1.7 1 0.901 124

5 13 14.0 1.7 2 0.905 141

6 13 14.0 1.7 3 0.900 164

7 13 14.5 1.2 1 0.910 30

8 13 14.5 1.2 2 0.906 33

9 13 14.5 1.2 3 0.916 40

10 13 14.5 1.7 1 0.900 56

11 13 14.5 1.7 2 0.901 63

12 13 14.5 1.7 3 0.908 76

13 13 15.0 1.2 1 0.913 18

14 13 15.0 1.2 2 0.927 21

15 13 15.0 1.2 3 0.922 24

16 13 15.0 1.7 1 0.914 34

17 13 15.0 1.7 2 0.921 39

18 13 15.0 1.7 3 0.910 44

The interpretation is that in the best-case scenario (large mean difference of 2, small standard deviation of
1.2, and balanced design), a sample size of N = 18 (n1 D n2 D 9) patients is sufficient to achieve a power of
at least 0.9. In the worst-case scenario (small mean difference of 1, large standard deviation of 1.7, and a 1:3
unbalanced design), a sample size of N = 164 (n1 = 41, n2 = 123) patients is necessary. The Nominal Power
of 0.9 in the “Fixed Scenario Elements” table represents the input target power, and the Actual Power column
in the “Computed N Total” table is the power at the sample size (N Total) adjusted to achieve the specified
sample weighting exactly.
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Note the following characteristics of the analysis, and ways you can modify them if you want:

� The total sample sizes are rounded up to multiples of the weight sums (2 for the 1:1 design, 3 for
the 1:2 design, and 4 for the 1:3 design) to ensure that each group size is an integer. To request raw
fractional sample size solutions, use the NFRACTIONAL option.

� Only the group weight that varies (the one for group 2) is displayed as an output column, while the
weight for group 1 appears in the “Fixed Scenario Elements” table. To display the group weights
together in output columns, use the matched version of the value list rather than the crossed version.

� If you can specify only differences between group means (instead of their individual values), or if you
want to display the mean differences instead of the individual means, use the MEANDIFF= option
instead of the GROUPMEANS= option.

The following statements implement all of these modifications:

proc power;
twosamplemeans

nfractional
meandiff = 1 to 2 by 0.5
stddev = 1.2 1.7
groupweights = (1 1) (1 2) (1 3)
power = 0.9
ntotal = .;

run;

Figure 89.5 shows the new results.

Figure 89.5 Sample Size Analysis for Two-Sample t Test Using Mean Differences

The POWER Procedure
Two-Sample t Test for Mean Difference

The POWER Procedure
Two-Sample t Test for Mean Difference

Fixed Scenario
Elements

Distribution Normal

Method Exact

Nominal Power 0.9

Number of Sides 2

Null Difference 0

Alpha 0.05
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Figure 89.5 continued

Computed Ceiling N Total

Index
Mean

Diff
Std
Dev Weight1 Weight2

Fractional
N Total

Actual
Power

Ceiling
N

Total

1 1.0 1.2 1 1 62.507429 0.902 63

2 1.0 1.2 1 2 70.065711 0.904 71

3 1.0 1.2 1 3 82.665772 0.901 83

4 1.0 1.7 1 1 123.418482 0.901 124

5 1.0 1.7 1 2 138.598159 0.901 139

6 1.0 1.7 1 3 163.899094 0.900 164

7 1.5 1.2 1 1 28.961958 0.900 29

8 1.5 1.2 1 2 32.308867 0.906 33

9 1.5 1.2 1 3 37.893351 0.901 38

10 1.5 1.7 1 1 55.977156 0.900 56

11 1.5 1.7 1 2 62.717357 0.901 63

12 1.5 1.7 1 3 73.954291 0.900 74

13 2.0 1.2 1 1 17.298518 0.913 18

14 2.0 1.2 1 2 19.163836 0.913 20

15 2.0 1.2 1 3 22.282926 0.910 23

16 2.0 1.7 1 1 32.413512 0.905 33

17 2.0 1.7 1 2 36.195531 0.907 37

18 2.0 1.7 1 3 42.504535 0.903 43

Note that the Nominal Power of 0.9 applies to the raw computed sample size (Fractional N Total), and the
Actual Power column applies to the rounded sample size (Ceiling N Total). Some of the adjusted sample
sizes in Figure 89.5 are lower than those in Figure 89.4 because underlying group sample sizes are allowed to
be fractional (for example, the first Ceiling N Total of 63 corresponding to equal group sizes of 31.5).
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Syntax: POWER Procedure
The following statements are available in the POWER procedure:

PROC POWER < options > ;
COXREG < options > ;
LOGISTIC < options > ;
MULTREG < options > ;
ONECORR < options > ;
ONESAMPLEFREQ < options > ;
ONESAMPLEMEANS < options > ;
ONEWAYANOVA < options > ;
PAIREDFREQ < options > ;
PAIREDMEANS < options > ;
PLOT < plot-options > < / graph-options > ;
TWOSAMPLEFREQ < options > ;
TWOSAMPLEMEANS < options > ;
TWOSAMPLESURVIVAL < options > ;
TWOSAMPLEWILCOXON < options > ;

The statements in the POWER procedure consist of the PROC POWER statement, a set of analysis state-
ments (for requesting specific power and sample size analyses), and the PLOT statement (for producing
graphs). The PROC POWER statement and at least one of the analysis statements are required. The analysis
statements are COXREG, LOGISTIC, MULTREG, ONECORR, ONESAMPLEFREQ, ONESAMPLE-
MEANS, ONEWAYANOVA, PAIREDFREQ, PAIREDMEANS, TWOSAMPLEFREQ, TWOSAMPLE-
MEANS, TWOSAMPLESURVIVAL, and TWOSAMPLEWILCOXON.

You can use multiple analysis statements and multiple PLOT statements. Each analysis statement produces a
separate sample size analysis. Each PLOT statement refers to the previous analysis statement and generates a
separate graph (or set of graphs).

The name of an analysis statement describes the framework of the statistical analysis for which sample
size calculations are desired. You use options in the analysis statements to identify the result parameter to
compute, to specify the statistical test and computational options, and to provide one or more scenarios for
the values of relevant analysis parameters.

Table 89.1 summarizes the basic functions of each statement in PROC POWER. The syntax of each statement
in Table 89.1 is described in the following pages.

Table 89.1 Statements in the POWER Procedure

Statement Description

PROC POWER Invokes the procedure

COXREG Cox proportional hazards regression
LOGISTIC Likelihood ratio chi-square test of a single predictor in logistic

regression with binary response
MULTREG Tests of one or more coefficients in multiple linear regression
ONECORR Fisher’s z test and t test of (partial) correlation
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Table 89.1 continued

Statement Description

ONESAMPLEFREQ Tests, confidence interval precision, and equivalence tests of a
single binomial proportion

ONESAMPLEMEANS One-sample t test, confidence interval precision, or equivalence test
ONEWAYANOVA One-way ANOVA including single-degree-of-freedom contrasts
PAIREDFREQ McNemar’s test for paired proportions
PAIREDMEANS Paired t test, confidence interval precision, or equivalence test
PLOT Displays plots for previous sample size analysis

TWOSAMPLEFREQ Chi-square, likelihood ratio, and Fisher’s exact tests for two
independent proportions

TWOSAMPLEMEANS Two-sample t test, confidence interval precision, or equivalence
test

TWOSAMPLESURVIVAL Log-rank, Gehan, and Tarone-Ware tests for comparing two
survival curves

TWOSAMPLEWILCOXON Wilcoxon-Mann-Whitney (rank-sum) test for 2 independent groups

See the section “Summary of Analyses” on page 7214 for a summary of the analyses available and the syntax
required for them.

PROC POWER Statement
PROC POWER < options > ;

The PROC POWER statement invokes the POWER procedure. You can specify the following option.

PLOTONLY
specifies that only graphical results from the PLOT statement should be produced.

COXREG Statement
COXREG < options > ;

The COXREG statement performs power and sample size analyses for the score test of a single scalar
predictor in Cox proportional hazards regression for survival data, possibly in the presence of one or more
covariates that might be correlated with the tested predictor.

Summary of Options

Table 89.2 summarizes the options available in the COXREG statement.
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Table 89.2 COXREG Statement Options

Option Description

Define analysis
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
SIDES= Specifies the number of sides and the direction of the statistical test

Specify effects
RSQUARE= Specifies the R2 value from the regression of the predictor of interest on

the remaining predictors
HAZARDRATIO= Specifies the hazard ratio

Specify variability
STDDEV= Specifies the standard deviation of the predictor variable being tested

Specify sample size
EVENTPROB= Specifies the probability that an uncensored event occurs
EVENTSTOTAL= Specifies the expected total number of events
NFRACTIONAL Enables fractional input and output for sample sizes
NTOTAL= Specifies the sample size

Specify power
POWER= Specifies the desired power of the test

Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 89.3 summarizes the valid result parameters for different analyses in the COXREG statement.

Table 89.3 Summary of Result Parameters in the COXREG
Statement

Analyses Solve For Syntax

TEST=SCORE Power POWER=.
Sample size NTOTAL=.

EVENTSTOTAL=.

Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test. The default is 0.05, which corresponds to the
usual 0.05 � 100% = 5% level of significance. For information about specifying the number-list , see
the section “Specifying Value Lists in Analysis Statements” on page 7216.
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EVENTPROB=number-list
specifies the probability that an uncensored event occurs. You must specify this option when you
use the NTOTAL= option, and it is ignored when you use the EVENTSTOTAL= option. If you are
computing power, the input sample size is multiplied by the event probability to determine the number
of events. If you are computing sample size, the internally computed number of events is divided by
the event probability to compute the sample size. For information about specifying the number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 7216.

EVENTSTOTAL=number-list

EVENTTOTAL=number-list

EETOTAL=number-list
specifies the expected number of uncensored events, or requests a solution for this parameter by
specifying a missing value (EVENTSTOTAL=.). The NFRACTIONAL option is automatically
enabled when you use the EVENTSTOTAL= option. You must use either the EVENTSTOTAL= option
or the NTOTAL= option, and you cannot use both. For information about specifying the number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 7216.

HAZARDRATIO=number-list

HR=number-list
specifies the hazard ratio for a one-unit increase in the predictor of interest x1, holding any other
predictors constant. The hazard ratio is equal to exp.ˇ1/, where ˇ1 is the regression coefficient of x1.
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 7216.

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. This option is automatically enabled when you use
the EVENTSTOTAL= option. For information about the ramifications of the presence (and absence)
of the NFRACTIONAL option, see the section “Sample Size Adjustment Options” on page 7219.

NTOTAL=number-list
specifies the sample size or requests a solution for the sample size by specifying a missing value
(NTOTAL=.). You must use either the NTOTAL= option or the EVENTSTOTAL= option, and you
cannot use both. The number of events is used internally in calculations, and the sample size is the ratio
of the number of events (EVENTSTOTAL) and the event probability EVENTPROB. For information
about specifying the number-list , see the section “Specifying Value Lists in Analysis Statements” on
page 7216.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUTPUT-
ORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

� SIDES=
� ALPHA=
� EVENTPROB=
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� RSQUARE=
� HAZARDRATIO=
� STDDEV=
� NTOTAL=
� EVENTSTOTAL=
� POWER=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same or-
der in which their corresponding options are specified in the COXREG statement. The OUT-
PUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order
in which their corresponding options are specified in the COXREG statement.

POWER=number-list
specifies the desired power of the test or requests a solution for the power by specifying a missing
value (POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 7216.

RSQUARE=number-list
specifies the R2 value from the regression of the predictor of interest on the remaining predictors.
The sample size is either multiplied (if you are computing power) or divided (if you are computing
sample size) by a factor of .1 �R2/. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 7216.

SIDES=keyword-list
specifies the number of sides (or tails) and the direction of the statistical test or confidence interval.
For information about specifying the keyword-list , see the section “Specifying Value Lists in Analysis
Statements” on page 7216. You can specify the following keywords:

1 specifies a one-sided test, with the alternative hypothesis in the same direction as the effect.

2 specifies a two-sided test.

U specifies an upper one-sided test, with the alternative hypothesis indicating a positive correlation
between the tested predictor and survival—that is, a hazard ratio less than 1.

L specifies a lower one-sided test, with the alternative hypothesis indicating a negative correlation
between the tested predictor and survival—that is, a hazard ratio greater than 1.

By default, SIDES=2.

STDDEV=number-list

STD=number-list
specifies the standard deviation of the predictor of interest. For information about specifying the
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 7216.

TEST=SCORE
specifies the score test in Cox proportional hazards regression. This is the default test option.
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Restrictions on Option Combinations

To specify the sample size, choose one of the following parameterizations:

� sample size (by using the NTOTAL= option) and event probability (by using the EVENTPROB=
option)

� number of events (by using the EVENTSTOTAL= option)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses that are supported in the TWOSAMPLESUR-
VIVAL statement.

Score Test for Cox Proportional Hazards Regression
You can use the NTOTAL= and EVENTPROB= options, as in the following statements. Default values for
the SIDES=, ALPHA=, and TEST= options specify a two-sided score test with a significance level of 0.05.

proc power;
coxreg

hazardratio = 1.4
rsquare = 0.15
stddev = 1.2
ntotal = 80
eventprob = 0.8
power = .

;
run;

You can also use the EVENTSTOTAL= option, as in the following statements:

proc power;
coxreg

hazardratio = 1.6
rsquare = 0.2
stddev = 1.1
power = 0.9
eventstotal = .

;
run;

LOGISTIC Statement
LOGISTIC < options > ;

The LOGISTIC statement performs power and sample size analyses for the likelihood ratio chi-square test of
a single predictor in binary logistic regression, possibly in the presence of one or more covariates that might
be correlated with the tested predictor.
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Summary of Options

Table 89.4 summarizes the options available in the LOGISTIC statement.

Table 89.4 LOGISTIC Statement Options

Option Description

Define analysis
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
COVARIATES= Specifies the distributions of predictor variables
TESTPREDICTOR= Specifies the distribution of the predictor variable being tested
VARDIST= Defines a distribution for a predictor variable

Specify effects
CORR= Specifies the multiple correlation between the predictor and the covariates
COVODDSRATIOS= Specifies the odds ratios for the covariates
COVREGCOEFFS= Specifies the regression coefficients for the covariates
DEFAULTUNIT= Specifies the default change in the predictor variables
INTERCEPT= Specifies the intercept
RESPONSEPROB= Specifies the response probability
TESTODDSRATIO= Specifies the odds ratio being tested
TESTREGCOEFF= Specifies the regression coefficient for the predictor variable
UNITS= Specifies the changes in the predictor variables

Specify sample size
NFRACTIONAL Enables fractional input and output for sample sizes
NTOTAL= Specifies the sample size

Specify power
POWER= Specifies the desired power of the test

Specify computational method
DEFAULTNBINS= Specifies the default number of categories for each predictor variable
NBINS= Specifies the number of categories for predictor variables

Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 89.5 summarizes the valid result parameters in the LOGISTIC statement.

Table 89.5 Summary of Result Parameters in the LOGISTIC
Statement

Analyses Solve For Syntax

TEST=LRCHI Power POWER=.
Sample size NTOTAL=.
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Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test. The default is 0.05, which corresponds to the
usual 0.05 � 100% = 5% level of significance. For information about specifying the number-list , see
the section “Specifying Value Lists in Analysis Statements” on page 7216.

CORR=number-list
specifies the multiple correlation (�) between the tested predictor and the covariates. If you also specify
the COVARIATES= option, then the sample size is either multiplied (if you are computing power) or
divided (if you are computing sample size) by a factor of .1 � �2/. For information about specifying
the number-list , see the section “Specifying Value Lists in Analysis Statements” on page 7216.

COVARIATES=grouped-name-list
specifies the distributions of any predictor variables in the model but not being tested, using labels
specified with the VARDIST= option. The distributions are assumed to be independent of each
other and of the tested predictor. If this option is omitted, then the tested predictor specified by the
TESTEDPREDICTOR= option is assumed to be the only predictor in the model. For information about
specifying the grouped-name-list , see the section “Specifying Value Lists in Analysis Statements” on
page 7216.

COVODDSRATIOS=grouped-number-list
specifies the odds ratios for the covariates in the full model (including variables in the TESTPREDIC-
TOR= and COVARIATES= options). The ordering of the values corresponds to the ordering in the
COVARIATES= option. If the response variable is coded as Y = 1 for success and Y = 0 for failure,
then the odds ratio for each covariate X is the odds of Y = 1 when X = a divided by the odds of Y = 1
when X = b, where a and b are determined from the DEFAULTUNIT= and UNITS= options. Values
must be greater than zero. For information about specifying the grouped-number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 7216.

COVREGCOEFFS=grouped-number-list
specifies the regression coefficients for the covariates in the full model including the test predictor (as
specified by the TESTPREDICTOR= option). The ordering of the values corresponds to the ordering
in the COVARIATES= option. For information about specifying the grouped-number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 7216.

DEFAULTNBINS=number
specifies the default number of categories (or “bins”) into which the distribution for each predictor
variable is divided in internal calculations. Higher values increase computational time and memory
requirements but generally lead to more accurate results. However, if the value is too high, then
numerical instability can occur. Lower values are less likely to produce “No solution computed” errors.
Each test predictor or covariate that is absent from the NBINS= option derives its bin number from the
DEFAULTNBINS= option. The default value is DEFAULTNBINS=10.

There are two variable distributions for which the number of bins can be overridden internally:

� For an ordinal distribution, the number of ordinal values is always used as the number of bins.

� For a binomial distribution, if the requested number of bins is larger than n + 1, where n is the
sample size parameter of the binomial distribution, then exactly n + 1 bins are used.
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DEFAULTUNIT=change-spec
specifies the default change in the predictor variables assumed for odds ratios specified with the
COVODDSRATIOS= and TESTODDSRATIO= options. Each test predictor or covariate that is absent
from the UNITS= option derives its change value from the DEFAULTUNIT= option. The value must
be nonzero. The default value is DEFAULTUNIT=1. This option can be used only if at least one of the
COVODDSRATIOS= and TESTODDSRATIO= options is used.

Valid specifications for change-spec are as follows:

number defines the odds ratio as the ratio of the response variable odds when X = a to the odds when
X = a – number for any constant a.

<+ | ->SD defines the odds ratio as the ratio of the odds when X = a to the odds when X = a – � (or
X = a + � , if SD is preceded by a minus sign (–)) for any constant a, where � is the standard
deviation of X (as determined from the VARDIST= option).

multiple*SD defines the odds ratio as the ratio of the odds when X = a to the odds when X = a –
multiple * � for any constant a, where � is the standard deviation of X (as determined from the
VARDIST= option).

PERCENTILES(p1, p2) defines the odds ratio as the ratio of the odds when X is equal to its p2�
100th percentile to the odds when X is equal to its p1� 100th percentile (where the percentiles
are determined from the distribution specified in the VARDIST= option). Values for p1 and p2
must be strictly between 0 and 1.

INTERCEPT=number-list
specifies the intercept in the full model (including variables in the TESTPREDICTOR= and COVARI-
ATES= options). For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 7216.

NBINS=(“name” = number < . . . "name" = number >)
specifies the number of categories (or “bins”) into which the distribution for each predictor variable
(identified by its name from the VARDIST= option) is divided in internal calculations. Higher values
increase computational time and memory requirements but generally lead to more accurate results.
However, if the value is too high, then numerical instability can occur. Lower values are less likely
to produce “No solution computed” errors. Each predictor variable that is absent from the NBINS=
option derives its bin number from the DEFAULTNBINS= option.

There are two variable distributions for which the NBINS= value can be overridden internally:

� For an ordinal distribution, the number of ordinal values is always used as the number of bins.

� For a binomial distribution, if the requested number of bins is larger than n + 1, where n is the
sample size parameter of the binomial distribution, then exactly n + 1 bins are used.

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 7219 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.
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NTOTAL=number-list
specifies the sample size or requests a solution for the sample size by specifying a missing value
(NTOTAL=.). Values must be at least one. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 7216.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

� DEFAULTNBINS=
� NBINS=
� ALPHA=
� RESPONSEPROB=
� INTERCEPT=
� TESTPREDICTOR=
� TESTODDSRATIO=
� TESTREGCOEFF=
� COVARIATES=
� COVODDSRATIOS=
� COVREGCOEFFS=
� CORR=
� NTOTAL=
� POWER=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same or-
der in which their corresponding options are specified in the LOGISTIC statement. The OUT-
PUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order in
which their corresponding options are specified in the LOGISTIC statement.

POWER=number-list
specifies the desired power of the test or requests a solution for the power by specifying a missing
value (POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 7216.

RESPONSEPROB=number-list
specifies the response probability in the full model when all predictor variables (including variables in
the TESTPREDICTOR= and COVARIATES= options) are equal to their means. The log odds of this
probability are equal to the intercept in the full model where all predictor are centered at their means.
If the response variable is coded as Y = 1 for success and Y = 0 for failure, then this probability is
equal to the mean of Y in the full model when all Xs are equal to their means. Values must be strictly
between zero and one. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 7216.

TEST=LRCHI
specifies the likelihood ratio chi-square test of a single model parameter in binary logistic regression.
This is the default test option.
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TESTODDSRATIO=number-list
specifies the odds ratio for the predictor variable being tested in the full model (including variables in
the TESTPREDICTOR= and COVARIATES= options). If the response variable is coded as Y = 1 for
success and Y = 0 for failure, then the odds ratio for the X being tested is the odds of Y = 1 when X = a
divided by the odds of Y = 1 when X = b, where a and b are determined from the DEFAULTUNIT= and
UNITS= options. Values must be greater than zero. For information about specifying the number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 7216.

TESTPREDICTOR=name-list
specifies the distribution of the predictor variable being tested, using labels specified with the
VARDIST= option. This distribution is assumed to be independent of the distributions of the co-
variates as defined in the COVARIATES= option. For information about specifying the name-list , see
the section “Specifying Value Lists in Analysis Statements” on page 7216.

TESTREGCOEFF=number-list
specifies the regression coefficient for the predictor variable being tested in the full model including the
covariates specified by the COVARIATES= option. For information about specifying the number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 7216.

UNITS=(“name” = change-spec < . . . "name" = change-spec >)
specifies the changes in the predictor variables assumed for odds ratios specified with the COV-
ODDSRATIOS= and TESTODDSRATIO= options. Each predictor variable whose name (from
the VARDIST= option) is absent from the UNITS option derives its change value from the DE-
FAULTUNIT= option. This option can be used only if at least one of the COVODDSRATIOS= and
TESTODDSRATIO= options is used.

Valid specifications for change-spec are as follows:

number defines the odds ratio as the ratio of the response variable odds when X = a to the odds when
X = a – number for any constant a.

<+ | ->SD defines the odds ratio as the ratio of the odds when X = a to the odds when X = a – � (or
X = a + � , if SD is preceded by a minus sign (–)) for any constant a, where � is the standard
deviation of X (as determined from the VARDIST= option).

multiple*SD defines the odds ratio as the ratio of the odds when X = a to the odds when X = a –
multiple �� for any constant a, where � is the standard deviation of X (as determined from the
VARDIST= option).

PERCENTILES(p1, p2) defines the odds ratio as the ratio of the odds when X is equal to its p2�
100th percentile to the odds when X is equal to its p1� 100th percentile (where the percentiles
are determined from the distribution specified in the VARDIST= option). Values for p1 and p2
must be strictly between 0 and 1.

Each unit value must be nonzero.

VARDIST("label")=distribution (parameters)
defines a distribution for a predictor variable.

For the VARDIST= option,
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label identifies the variable distribution in the output and with the COVARIATES= and
TESTPREDICTOR= options.

distribution specifies the distributional form of the variable.

parameters specifies one or more parameters associated with the distribution.

The distributions and parameters are named and defined in the same way as the distributions and
arguments in the CDF SAS function; for more information, see SAS Language Reference: Dictionary.
Choices for distributional forms and their parameters are as follows:

ORDINAL ((values) : (probabilities)) is an ordered categorical distribution. The values are any
numbers separated by spaces. The probabilities are numbers between 0 and 1 (inclusive)
separated by spaces. Their sum must be exactly 1. The number of probabilities must match the
number of values.

BETA (a, b <, l , r >) is a beta distribution with shape parameters a and b and optional location
parameters l and r . The values of a and b must be greater than 0, and l must be less than r . The
default values for l and r are 0 and 1, respectively.

BINOMIAL (p, n) is a binomial distribution with probability of success p and number of independent
Bernoulli trials n. The value of p must be greater than 0 and less than 1, and n must be an integer
greater than 0. If n = 1, then the distribution is binary.

EXPONENTIAL (�) is an exponential distribution with scale �, which must be greater than 0.

GAMMA (a, �) is a gamma distribution with shape a and scale �. The values of a and � must be
greater than 0.

LAPLACE (� , �) is a Laplace distribution with location � and scale �. The value of � must be
greater than 0.

LOGISTIC (� , �) is a logistic distribution with location � and scale �. The value of �must be greater
than 0.

LOGNORMAL (� , �) is a lognormal distribution with location � and scale �. The value of � must
be greater than 0.

NORMAL (� , �) is a normal distribution with mean � and standard deviation �. The value of � must
be greater than 0.

POISSON (m) is a Poisson distribution with mean m. The value of m must be greater than 0.

UNIFORM (l , r ) is a uniform distribution on the interval Œ l , r �, where l < r .

Restrictions on Option Combinations

To specify the intercept in the full model, choose one of the following two parameterizations:

� intercept (using the INTERCEPT= options)

� Prob(Y = 1) when all predictors are equal to their means (using the RESPONSEPROB= option)

To specify the effect associated with the predictor variable being tested, choose one of the following two
parameterizations:
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� odds ratio (using the TESTODDSRATIO= options)

� regression coefficient (using the TESTREGCOEFFS= option)

To describe the effects of the covariates in the full model, choose one of the following two parameterizations:

� odds ratios (using the COVODDSRATIOS= options)

� regression coefficients (using the COVREGCOEFFS= options)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses that are supported in the LOGISTIC statement.

Likelihood Ratio Chi-Square Test for One Predictor
You can express effects in terms of response probability and odds ratios, as in the following statements:

proc power;
logistic

vardist("x1a") = normal(0, 2)
vardist("x1b") = normal(0, 3)
vardist("x2") = poisson(7)
vardist("x3a") = ordinal((-5 0 5) : (.3 .4 .3))
vardist("x3b") = ordinal((-5 0 5) : (.4 .3 .3))
testpredictor = "x1a" "x1b"
covariates = "x2" | "x3a" "x3b"
responseprob = 0.15
testoddsratio = 1.75
covoddsratios = (2.1 1.4)
ntotal = 100
power = .;

run;

The VARDIST= options define the distributions of the predictor variables. The TESTPREDICTOR=
option specifies two scenarios for the test predictor distribution, Normal(10,2) and Normal(10,3). The
COVARIATES= option specifies two covariates, the first with a Poisson(7) distribution. The second covariate
has an ordinal distribution on the values –5, 0, and 5 with two scenarios for the associated probabilities: (.3,
.4, .3) and (.4, .3, .3). The response probability in the full model with all variables equal to zero is specified by
the RESPONSEPROB= option as 0.15. The odds ratio for a unit decrease in the tested predictor is specified
by the TESTODDSRATIO= option to be 1.75. Corresponding odds ratios for the two covariates in the full
model are specified by the COVODDSRATIOS= option to be 2.1 and 1.4. The POWER=. option requests a
solution for the power at a sample size of 100 as specified by the NTOTAL= option.

Default values of the TEST= and ALPHA= options specify a likelihood ratio test of the first predictor with a
significance level of 0.05. The default of DEFAULTUNIT=1 specifies that all odds ratios are defined in terms
of unit changes in predictors. The default of DEFAULTNBINS=10 specifies that each of the three predictor
variables is discretized into a distribution with 10 categories in internal calculations.

You can also express effects in terms of regression coefficients, as in the following statements:
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proc power;
logistic

vardist("x1a") = normal(0, 2)
vardist("x1b") = normal(0, 3)
vardist("x2") = poisson(7)
vardist("x3a") = ordinal((-5 0 5) : (.3 .4 .3))
vardist("x3b") = ordinal((-5 0 5) : (.4 .3 .3))
testpredictor = "x1a" "x1b"
covariates = "x2" | "x3a" "x3b"
intercept = -6.928162
testregcoeff = 0.5596158
covregcoeffs = (0.7419373 0.3364722)
ntotal = 100
power = .;

run;

The regression coefficients for the tested predictor (TESTREGCOEFF=0.5596158) and covariates (COV-
REGCOEFFS=(0.7419373 0.3364722)) are determined by taking the logarithm of the corresponding odds
ratios. The intercept in the full model is specified as –6.928162 by the INTERCEPT= option. This number
is calculated according to the formula at the end of “Analyses in the LOGISTIC Statement” on page 7225,
which expresses the intercept in terms of the response probability, regression coefficients, and predictor
means:

Intercept D log
�

0:15

1 � 0:15

�
� .0:5596158.0/C 0:7419373.7/C 0:3364722.0//

MULTREG Statement
MULTREG < options > ;

The MULTREG statement performs power and sample size analyses for Type III F tests of sets of predictors
in multiple linear regression, assuming either fixed or normally distributed predictors.

Summary of Options

Table 89.6 summarizes the options available in the MULTREG statement.

Table 89.6 MULTREG Statement Options

Option Description

Define analysis
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
MODEL= Specifies the assumed distribution of the predictors
NFULLPREDICTORS= Specifies the number of predictors in the full model
NOINT Specifies a no-intercept model
NREDUCEDPREDICTORS= Specifies the number of predictors in the reduced model
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Table 89.6 continued

Option Description

NTESTPREDICTORS= Specifies the number of predictors being tested

Specify effects
PARTIALCORR= Specifies the partial correlation
RSQUAREDIFF= Specifies the difference in R2

RSQUAREFULL= Specifies the R2 of the full model
RSQUAREREDUCED= Specifies the R2 of the reduced model

Specify sample size
NFRACTIONAL Enables fractional input and output for sample sizes
NTOTAL= Specifies the sample size

Specify power
POWER= Specifies the desired power

Control ordering in output
OUTPUTORDER= Controls the order of parameters

Table 89.7 summarizes the valid result parameters in the MULTREG statement.

Table 89.7 Summary of Result Parameters in the MULTREG
Statement

Analyses Solve For Syntax

TEST=TYPE3 Power POWER=.
Sample size NTOTAL=.

Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test. The default is 0.05, which corresponds to the
usual 0.05 � 100% = 5% level of significance. For information about specifying the number-list , see
the section “Specifying Value Lists in Analysis Statements” on page 7216.

MODEL=keyword-list
specifies the assumed distribution of the tested predictors. MODEL=FIXED indicates a fixed predictor
distribution. MODEL=RANDOM (the default) indicates a joint multivariate normal distribution
for the response and tested predictors. You can use the aliases CONDITIONAL for FIXED and
UNCONDITIONAL for RANDOM. For information about specifying the keyword-list , see the section
“Specifying Value Lists in Analysis Statements” on page 7216.

FIXED fixed predictors

RANDOM random (multivariate normal) predictors
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NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 7219 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.

NFULLPREDICTORS=number-list

NFULLPRED=number-list
specifies the number of predictors in the full model, not counting the intercept. For information
about specifying the number-list , see the section “Specifying Value Lists in Analysis Statements” on
page 7216.

NOINT
specifies a no-intercept model (for both full and reduced models). By default, the intercept is included
in the model. If you want to test the intercept, you can specify the NOINT option and simply consider
the intercept to be one of the predictors being tested. For information about specifying the number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 7216.

NREDUCEDPREDICTORS=number-list

NREDUCEDPRED=number-list

NREDPRED=number-list
specifies the number of predictors in the reduced model, not counting the intercept. This is the
same as the difference between values of the NFULLPREDICTORS= and NTESTPREDICTORS=
options. Note that supplying a value of 0 is the same as specifying an F test of a Pearson correlation.
This option cannot be used at the same time as the NTESTPREDICTORS= option. For information
about specifying the number-list , see the section “Specifying Value Lists in Analysis Statements” on
page 7216.

NTESTPREDICTORS=number-list

NTESTPRED=number-list
specifies the number of predictors being tested. This is the same as the difference between values
of the NFULLPREDICTORS= and NREDUCEDPREDICTORS= options. Note that supplying
identical values for the NTESTPREDICTORS= and NFULLPREDICTORS= options is the same as
specifying an F test of a Pearson correlation. This option cannot be used at the same time as the
NREDUCEDPREDICTORS= option. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 7216.

NTOTAL=number-list
specifies the sample size or requests a solution for the sample size by specifying a missing value
(NTOTAL=.). The minimum acceptable value for the sample size depends on the MODEL=, NOINT,
NFULLPREDICTORS=, NTESTPREDICTORS=, and NREDUCEDPREDICTORS= options. It
ranges from p + 1 to p + 3, where p is the value of the NFULLPREDICTORS option. For further
information about minimum NTOTAL values, see Table 89.32. For information about specifying the
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 7216.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:
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� MODEL=
� NFULLPREDICTORS=
� NTESTPREDICTORS=
� NREDUCEDPREDICTORS=
� ALPHA=
� PARTIALCORR=
� RSQUAREFULL=
� RSQUAREREDUCED=
� RSQUAREDIFF=
� NTOTAL=
� POWER=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same or-
der in which their corresponding options are specified in the MULTREG statement. The OUT-
PUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order in
which their corresponding options are specified in the MULTREG statement.

PARTIALCORR=number-list
PCORR=number-list

specifies the partial correlation between the tested predictors and the response, adjusting for any other
predictors in the model. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 7216.

POWER=number-list
specifies the desired power of the test or requests a solution for the power by specifying a missing
value (POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 7216.

RSQUAREDIFF=number-list
RSQDIFF=number-list

specifies the difference in R2 between the full and reduced models. This is equivalent to the proportion
of variation explained by the predictors you are testing. It is also equivalent to the squared semipartial
correlation of the tested predictors with the response. For information about specifying the number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 7216.

RSQUAREFULL=number-list
RSQFULL=number-list

specifies the R2 of the full model, where R2 is the proportion of variation explained by the model.
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 7216.

RSQUAREREDUCED=number-list
RSQREDUCED=number-list
RSQRED=number-list

specifies the R2 of the reduced model, where R2 is the proportion of variation explained by the
model. If the reduced model is an empty or intercept-only model (in other words, if NREDUCEDPRE-
DICTORS=0 or NTESTPREDICTORS=NFULLPREDICTORS), then RSQUAREREDUCED=0 is
assumed. For information about specifying the number-list , see the section “Specifying Value Lists in
Analysis Statements” on page 7216.
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TEST=TYPE3
specifies a Type III F test of a set of predictors adjusting for any other predictors in the model. This is
the default test option.

Restrictions on Option Combinations

To specify the number of predictors, use any two of these three options:

� the number of predictors in the full model (NFULLPREDICTORS=)

� the number of predictors in the reduced model (NREDUCEDPREDICTORS=)

� the number of predictors being tested (NTESTPREDICTORS=)

To specify the effect, choose one of the following parameterizations:

� partial correlation (by using the PARTIALCORR= option)

� R2 for the full and reduced models (by using any two of RSQUAREDIFF=, RSQUAREFULL=, and
RSQUAREREDUCED=)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses that are supported in the MULTREG statement.

Type III F Test of a Set of Predictors
You can express effects in terms of partial correlation, as in the following statements. Default values of the
TEST=, MODEL=, and ALPHA= options specify a Type III F test with a significance level of 0.05, assuming
normally distributed predictors.

proc power;
multreg

model = random
nfullpredictors = 7
ntestpredictors = 3
partialcorr = 0.35
ntotal = 100
power = .;

run;

You can also express effects in terms of R2:

proc power;
multreg

model = fixed
nfullpredictors = 7
ntestpredictors = 3
rsquarefull = 0.9
rsquarediff = 0.1
ntotal = .
power = 0.9;

run;
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ONECORR Statement
ONECORR < options > ;

The ONECORR statement performs power and sample size analyses for tests of simple and partial Pearson
correlation between two variables. Both Fisher’s z test and the t test are supported.

Summary of Options

Table 89.8 summarizes the options available in the ONECORR statement.

Table 89.8 ONECORR Statement Options

Option Description

Define analysis
DIST= Specifies the underlying distribution assumed for the test statistic
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
MODEL= Specifies the assumed distribution of the variables
NPARTIALVARS= Specifies the number of variables adjusted for in the correlation
NULLCORR= Specifies the null value of the correlation
SIDES= Specifies the number of sides and the direction of the statistical test

Specify effects
CORR= Specifies the correlation

Specify sample size
NFRACTIONAL Enables fractional input and output for sample sizes
NTOTAL= Specifies the sample size

Specify power
POWER= Specifies the desired power of the test

Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 89.9 summarizes the valid result parameters in the ONECORR statement.

Table 89.9 Summary of Result Parameters in the ONECORR
Statement

Analyses Solve For Syntax

TEST=PEARSON Power POWER=.
Sample size NTOTAL=.
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Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test. The default is 0.05, which corresponds to the
usual 0.05 � 100% = 5% level of significance. For information about specifying the number-list , see
the section “Specifying Value Lists in Analysis Statements” on page 7216.

CORR=number-list
specifies the correlation between two variables, possibly adjusting for other variables as determined
by the NPARTIALVARS= option. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 7216.

DIST=FISHERZ | T
specifies the underlying distribution assumed for the test statistic. FISHERZ corresponds to Fisher’s z
normalizing transformation of the correlation coefficient. T corresponds to the t transformation of the
correlation coefficient. Note that DIST=T is equivalent to analyses in the MULTREG statement with
NTESTPREDICTORS=1. The default value is FISHERZ.

MODEL=keyword-list
specifies the assumed distribution of the first variable when DIST=T. The second variable is assumed
to have a normal distribution. MODEL=FIXED indicates a fixed distribution. MODEL=RANDOM
(the default) indicates a joint bivariate normal distribution with the second variable. You can use the
aliases CONDITIONAL for FIXED and UNCONDITIONAL for RANDOM. This option can be used
only for DIST=T. For information about specifying the keyword-list , see the section “Specifying Value
Lists in Analysis Statements” on page 7216.

FIXED fixed variables

RANDOM random (bivariate normal) variables

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 7219 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.

NPARTIALVARS=number-list

NPVARS=number-list
specifies the number of variables adjusted for in the correlation between the two primary variables.
The default value is 0, which corresponds to a simple correlation. For information about specifying the
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 7216.

NTOTAL=number-list
specifies the sample size or requests a solution for the sample size by specifying a missing value (NTO-
TAL=.). Values for the sample size must be at least p + 3 when DIST=T and MODEL=CONDITIONAL,
and at least p + 4 when either DIST=FISHER or when DIST=T and MODEL=UNCONDITIONAL,
where p is the value of the NPARTIALVARS option. For information about specifying the number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 7216.
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NULLCORR=number-list

NULLC=number-list
specifies the null value of the correlation. The default value is 0. This option can be used only with
the DIST=FISHERZ analysis. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 7216.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

� MODEL=
� SIDES=
� NULL=
� ALPHA=
� NPARTIALVARS=
� CORR=
� NTOTAL=
� POWER=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same or-
der in which their corresponding options are specified in the ONECORR statement. The OUT-
PUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order in
which their corresponding options are specified in the ONECORR statement.

POWER=number-list
specifies the desired power of the test or requests a solution for the power by specifying a missing
value (POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 7216.

SIDES=keyword-list
specifies the number of sides (or tails) and the direction of the statistical test. You can specify the
following keywords:

1 specifies a one-sided test, with the alternative hypothesis in the same direction as the effect.

2 specifies a two-sided test.

U specifies an upper one-sided test, with the alternative hypothesis indicating a correlation greater
than the null value.

L specifies a lower one-sided test, with the alternative hypothesis indicating a correlation less than
the null value.

By default, SIDES=2.

TEST=PEARSON
specifies a test of the Pearson correlation coefficient between two variables, possibly adjusting for
other variables. This is the default test option.
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Option Groups for Common Analyses

This section summarizes the syntax for the common analyses that are supported in the ONECORR statement.

Fisher’s z Test for Pearson Correlation
The following statements demonstrate a power computation for Fisher’s z test for correlation. Default values
of TEST=PEARSON, ALPHA=0.05, SIDES=2, and NPARTIALVARS=0 are assumed.

proc power;
onecorr dist=fisherz

nullcorr = 0.15
corr = 0.35
ntotal = 180
power = .;

run;

t Test for Pearson Correlation
The following statements demonstrate a sample size computation for the t test for correlation. Default values
of TEST=PEARSON, MODEL=RANDOM, ALPHA=0.05, and SIDES=2 are assumed.

proc power;
onecorr dist=t

npartialvars = 4
corr = 0.45
ntotal = .
power = 0.85;

run;

ONESAMPLEFREQ Statement
ONESAMPLEFREQ < options > ;

The ONESAMPLEFREQ statement performs power and sample size analyses for exact and approximate
tests (including equivalence, noninferiority, and superiority) and confidence interval precision for a single
binomial proportion.

Summary of Options

Table 89.10 summarizes the options available in the ONESAMPLEFREQ statement.

Table 89.10 ONESAMPLEFREQ Statement Options

Option Description

Define analysis
CI= Specifies an analysis of precision of a confidence interval
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
EQUIVBOUNDS= Specifies the lower and upper equivalence bounds
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Table 89.10 continued

Option Description

LOWER= Specifies the lower equivalence bound
MARGIN= Specifies the equivalence or noninferiority or superiority margin
NULLPROPORTION= Specifies the null proportion
SIDES= Specifies the number of sides and the direction of the statistical test
UPPER= Specifies the upper equivalence bound

Specify effect
HALFWIDTH= Specifies the desired confidence interval half-width
PROPORTION= Specifies the binomial proportion

Specify variance estimation
VAREST= Specifies how the variance is computed

Specify sample size
NFRACTIONAL Enables fractional input and output for sample sizes
NTOTAL= Specifies the sample size

Specify power and related probabilities
POWER= Specifies the desired power of the test
PROBWIDTH= Specifies the probability of obtaining a confidence interval half-width less

than or equal to the value specified by HALFWIDTH=

Choose computational method
METHOD= Specifies the computational method

Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 89.11 summarizes the valid result parameters for different analyses in the ONESAMPLEFREQ
statement.

Table 89.11 Summary of Result Parameters in the
ONESAMPLEFREQ Statement

Analyses Solve For Syntax

CI=WILSON Prob(width) PROBWIDTH=.

CI=AGRESTICOULL Prob(width) PROBWIDTH=.

CI=JEFFREYS Prob(width) PROBWIDTH=.

CI=EXACT Prob(width) PROBWIDTH=.

CI=WALD Prob(width) PROBWIDTH=.

CI=WALD_CORRECT Prob(width) PROBWIDTH=.

TEST=ADJZ METHOD=EXACT Power POWER=.

TEST=ADJZ METHOD=NORMAL Power POWER=.
Sample size NTOTAL=.

TEST=EQUIV_ADJZ METHOD=EXACT Power POWER=.
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Table 89.11 continued

Analyses Solve For Syntax

TEST=EQUIV_ADJZ METHOD=NORMAL Power POWER=.
Sample size NTOTAL=.

TEST=EQUIV_EXACT Power POWER=.

TEST=EQUIV_Z METHOD=EXACT Power POWER=.

TEST=EQUIV_Z METHOD=NORMAL Power POWER=.
Sample size NTOTAL=.

TEST=EXACT Power POWER=.

TEST=Z METHOD=EXACT Power POWER=.

TEST=Z METHOD=NORMAL Power POWER=.
Sample size NTOTAL=.

Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test. The default is 0.05, which corresponds to the
usual 0.05 � 100% = 5% level of significance. If the CI= and SIDES=1 options are used, then the value
must be less than 0.5. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 7216.

CI

CI=AGRESTICOULL | AC

CI=JEFFREYS

CI=EXACT | CLOPPERPEARSON | CP

CI=WALD

CI=WALD_CORRECT

CI=WILSON | SCORE
specifies an analysis of precision of a confidence interval for the sample binomial proportion.

The value of the CI= option specifies the type of confidence interval. The CI=AGRESTICOULL option
is a generalization of the “Adjusted Wald / add 2 successes and 2 failures” interval of Agresti and
Coull (1998) and is presented in Brown, Cai, and DasGupta (2001). It corresponds to the TABLES
/ BINOMIAL (AGRESTICOULL) option in PROC FREQ. The CI=JEFFREYS option specifies
the equal-tailed Jeffreys prior Bayesian interval, which corresponds to the TABLES / BINOMIAL
(JEFFREYS) option in PROC FREQ. The CI=EXACT option specifies the exact Clopper-Pearson
confidence interval based on enumeration, which corresponds to the TABLES / BINOMIAL (EXACT)
option in PROC FREQ. The CI=WALD option specifies the confidence interval based on the Wald test
(also commonly called the z test or normal-approximation test), which corresponds to the TABLES
/ BINOMIAL (WALD) option in PROC FREQ. The CI=WALD_CORRECT option specifies the
confidence interval based on the Wald test with continuity correction, which corresponds to the
TABLES / BINOMIAL (CORRECT WALD) option in PROC FREQ. The CI=WILSON option (the
default) specifies the confidence interval based on the score statistic, which corresponds to the TABLES
/ BINOMIAL (WILSON) option in PROC FREQ.
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Instead of power, the relevant probability for this analysis is the probability of achieving a desired
precision. Specifically, it is the probability that the half-width of the confidence interval will be at most
the value specified by the HALFWIDTH= option.

EQUIVBOUNDS=grouped-number-list
specifies the lower and upper equivalence bounds, representing the same information as the combination
of the LOWER= and UPPER= options but grouping them together. The EQUIVBOUNDS= option
can be used only with equivalence analyses (TEST=EQUIV_ADJZ | EQUIV_EXACT | EQUIV_Z).
Values must be strictly between 0 and 1. For information about specifying the grouped-number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 7216.

HALFWIDTH=number-list
specifies the desired confidence interval half-width. The half-width for a two-sided interval is the
length of the confidence interval divided by two. This option can be used only with the CI= analysis.
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 7216.

LOWER=number-list
specifies the lower equivalence bound for the binomial proportion. The LOWER= option can be used
only with equivalence analyses (TEST=EQUIV_ADJZ | EQUIV_EXACT | EQUIV_Z). Values must be
strictly between 0 and 1. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 7216.

MARGIN=number-list
specifies the equivalence or noninferiority or superiority margin, depending on the analysis.

The MARGIN= option can be used with one-sided analyses (SIDES = 1 | U | L), in which case it
specifies the margin added to the null proportion value in the hypothesis test, resulting in a noninferiority
or superiority test (depending on the agreement between the effect and hypothesis directions and the
sign of the margin). A test with a null proportion p0 and a margin m is the same as a test with null
proportion p0 Cm and no margin.

The MARGIN= option can also be used with equivalence analyses (TEST=EQUIV_ADJZ |
EQUIV_EXACT | EQUIV_Z) when the NULLPROPORTION= option is used, in which case it
specifies the lower and upper equivalence bounds as p0 �m and p0 Cm, where p0 is the value of the
NULLPROPORTION= option and m is the value of the MARGIN= option.

The MARGIN= option cannot be used in conjunction with the SIDES=2 option. (Instead, specify an
equivalence analysis by using TEST=EQUIV_ADJZ or TEST=EQUIV_EXACT or TEST=EQUIV_Z).
Also, the MARGIN= option cannot be used with the CI= option.

Values must be strictly between –1 and 1. In addition, the sum of NULLPROPORTION and MARGIN
must be strictly between 0 and 1 for one-sided analyses, and the derived lower equivalence bound (2 *
NULLPROPORTION – MARGIN) must be strictly between 0 and 1 for equivalence analyses.

For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 7216.

METHOD=EXACT | NORMAL
specifies the computational method. METHOD=EXACT (the default) computes exact results by using
the binomial distribution. METHOD=NORMAL computes approximate results by using the normal
approximation to the binomial distribution.
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NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. This option is invalid when the METHOD=EXACT
option is specified. See the section “Sample Size Adjustment Options” on page 7219 for information
about the ramifications of the presence (and absence) of the NFRACTIONAL option.

NTOTAL=number-list
specifies the sample size or requests a solution for the sample size by specifying a missing value
(NTOTAL=.). For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 7216.

NULLPROPORTION=number-list

NULLP=number-list
specifies the null proportion. A value of 0.5 corresponds to the sign test. For information about speci-
fying the number-list , see the section “Specifying Value Lists in Analysis Statements” on page 7216.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

� SIDES=
� NULLPROPORTION=
� ALPHA=
� PROPORTION=
� NTOTAL=
� POWER=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same order in
which their corresponding options are specified in the ONESAMPLEFREQ statement. The OUT-
PUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order in
which their corresponding options are specified in the ONESAMPLEFREQ statement.

POWER=number-list
specifies the desired power of the test or requests a solution for the power by specifying a missing
value (POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 7216.

PROBWIDTH=number-list
specifies the desired probability of obtaining a confidence interval half-width less than or equal to the
value specified by the HALFWIDTH= option. A missing value (PROBWIDTH=.) requests a solution
for this probability. Values are expressed as probabilities (for example, 0.9) rather than percentages.
This option can be used only with the CI= analysis. For information about specifying the number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 7216.
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PROPORTION=number-list

P=number-list
specifies the binomial proportion—that is, the expected proportion of successes in the hypothetical
binomial trial. For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 7216.

SIDES=keyword-list
specifies the number of sides (or tails) and the direction of the statistical test. For information about
specifying the keyword-list , see the section “Specifying Value Lists in Analysis Statements” on
page 7216. You can specify the following keywords:

1 specifies a one-sided test, with the alternative hypothesis in the same direction as the effect.

2 specifies a two-sided test.

U specifies an upper one-sided test, with the alternative hypothesis indicating a proportion greater
than the null value.

L specifies a lower one-sided test, with the alternative hypothesis indicating a proportion less than
the null value.

If the effect size is zero, then SIDES=1 is not permitted; instead, specify the direction of the test
explicitly in this case with either SIDES=L or SIDES=U. By default, SIDES=2.

TEST= ADJZ | EQUIV_ADJZ | EQUIV_EXACT | EQUIV_Z | EXACT | Z

TEST
specifies the statistical analysis. TEST=ADJZ specifies a normal-approximate z test with continu-
ity adjustment. TEST=EQUIV_ADJZ specifies a normal-approximate two-sided equivalence test
based on the z statistic with continuity adjustment and a TOST (two one-sided tests) procedure.
TEST=EQUIV_EXACT specifies the exact binomial two-sided equivalence test based on a TOST (two
one-sided tests) procedure. TEST=EQUIV_Z specifies a normal-approximate two-sided equivalence
test based on the z statistic without any continuity adjustment, which is the same as the chi-square
statistic, and a TOST (two one-sided tests) procedure. TEST or TEST=EXACT (the default) speci-
fies the exact binomial test. TEST=Z specifies a normal-approximate z test without any continuity
adjustment, which is the same as the chi-square test when SIDES=2.

UPPER=number-list
specifies the upper equivalence bound for the binomial proportion. The UPPER= option can be used
only with equivalence analyses (TEST=EQUIV_ADJZ | EQUIV_EXACT | EQUIV_Z). Values must be
strictly between 0 and 1. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 7216.

VAREST=keyword-list
specifies how the variance is computed in the test statistic for the TEST=Z, TEST=ADJZ,
TEST=EQUIV_Z, and TEST=EQUIV_ADJZ analyses. For information about specifying the keyword-
list , see the section “Specifying Value Lists in Analysis Statements” on page 7216. Valid keywords are
as follows:

NULL (the default) estimates the variance by using the null proportion(s) (specified by some com-
bination of the NULLPROPORTION=, MARGIN=, LOWER=, and UPPER= options). For
TEST=Z and TEST=ADJZ, the null proportion is the value of the NULLPROPORTION=
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option plus the value of the MARGIN= option (if it is used). For TEST=EQUIV_Z and
TEST=EQUIV_ADJZ, there are two null proportions, which correspond to the lower and
upper equivalence bounds, one for each test in the TOST (two one-sided tests) procedure.

SAMPLE estimates the variance by using the observed sample proportion.

This option is ignored if the analysis is one other than TEST=Z, TEST=ADJZ, TEST=EQUIV_Z, or
TEST=EQUIV_ADJZ.

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses that are supported in the ONESAMPLEFREQ
statement.

Exact Test of a Binomial Proportion
The following statements demonstrate a power computation for the exact test of a binomial proportion.
Defaults for the SIDES= and ALPHA= options specify a two-sided test with a 0.05 significance level.

proc power;
onesamplefreq test=exact

nullproportion = 0.2
proportion = 0.3
ntotal = 100
power = .;

run;

z Test
The following statements demonstrate a sample size computation for the z test of a binomial proportion.
Defaults for the SIDES=, ALPHA=, and VAREST= options specify a two-sided test with a 0.05 significance
level that uses the null variance estimate.

proc power;
onesamplefreq test=z method=normal

nullproportion = 0.8
proportion = 0.85
sides = u
ntotal = .
power = .9;

run;

z Test with Continuity Adjustment
The following statements demonstrate a sample size computation for the z test of a binomial proportion with
a continuity adjustment. Defaults for the SIDES=, ALPHA=, and VAREST= options specify a two-sided test
with a 0.05 significance level that uses the null variance estimate.

proc power;
onesamplefreq test=adjz method=normal

nullproportion = 0.15
proportion = 0.1
sides = l
ntotal = .
power = .9;

run;
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Exact Equivalence Test for a Binomial Proportion
You can specify equivalence bounds by using the EQUIVBOUNDS= option, as in the following statements:

proc power;
onesamplefreq test=equiv_exact

proportion = 0.35
equivbounds = (0.2 0.4)
ntotal = 50
power = .;

run;

You can also specify the combination of NULLPROPORTION= and MARGIN= options:

proc power;
onesamplefreq test=equiv_exact

proportion = 0.35
nullproportion = 0.3
margin = 0.1
ntotal = 50
power = .;

run;

Finally, you can specify the combination of LOWER= and UPPER= options:

proc power;
onesamplefreq test=equiv_exact

proportion = 0.35
lower = 0.2
upper = 0.4
ntotal = 50
power = .;

run;

Note that the three preceding analyses are identical.

Exact Noninferiority Test for a Binomial Proportion
A noninferiority test corresponds to an upper one-sided test with a negative-valued margin, as demonstrated
in the following statements:

proc power;
onesamplefreq test=exact

sides = U
proportion = 0.15
nullproportion = 0.1
margin = -0.02
ntotal = 130
power = .;

run;

Exact Superiority Test for a Binomial Proportion
A superiority test corresponds to an upper one-sided test with a positive-valued margin, as demonstrated in
the following statements:
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proc power;
onesamplefreq test=exact

sides = U
proportion = 0.15
nullproportion = 0.1
margin = 0.02
ntotal = 130
power = .;

run;

Confidence Interval Precision
The following statements performs a confidence interval precision analysis for the Wilson score-based
confidence interval for a binomial proportion. The default value of the ALPHA= option specifies a confidence
level of 0.95.

proc power;
onesamplefreq ci=wilson

halfwidth = 0.1
proportion = 0.3
ntotal = 70
probwidth = .;

run;

Restrictions on Option Combinations

To specify the equivalence bounds for TEST=EQUIV_ADJZ, TEST=EQUIV_EXACT, and TEST=EQUIV_Z,
use any of these three option sets:

� lower and upper equivalence bounds, using the EQUIVBOUNDS= option

� lower and upper equivalence bounds, using the LOWER= and UPPER= options

� null proportion (NULLPROPORTION=) and margin (MARGIN=)

ONESAMPLEMEANS Statement
ONESAMPLEMEANS < options > ;

The ONESAMPLEMEANS statement performs power and sample size analyses for t tests, equivalence tests,
and confidence interval precision involving one sample.

Summary of Options

Table 89.12 summarizes the options available in the ONESAMPLEMEANS statement.
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Table 89.12 ONESAMPLEMEANS Statement Options

Option Description

Define analysis
CI= Specifies an analysis of precision of the confidence interval for the mean
DIST= Specifies the underlying distribution assumed for the test statistic
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
LOWER= Specifies the lower equivalence bound for the mean
NULLMEAN= Specifies the null mean
SIDES= Specifies the number of sides and the direction of the statistical test
UPPER= Specifies the upper equivalence bound for the mean

Specify effect
HALFWIDTH= Specifies the desired confidence interval half-width
MEAN= Specifies the mean

Specify variability
CV= Specifies the coefficient of variation
STDDEV= Specifies the standard deviation

Specify sample size
NFRACTIONAL Enables fractional input and output for sample sizes
NTOTAL= Specifies the sample size

Specify power and related probabilities
POWER= Specifies the desired power of the test
PROBTYPE= Specifies the type of probability for the PROBWIDTH= option
PROBWIDTH= Specifies the probability of obtaining a confidence interval half-width less

than or equal to the value specified by HALFWIDTH=

Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 89.13 summarizes the valid result parameters for different analyses in the ONESAMPLEMEANS
statement.

Table 89.13 Summary of Result Parameters in the
ONESAMPLEMEANS Statement

Analyses Solve For Syntax

TEST=T DIST=NORMAL Power POWER=.
Sample size NTOTAL=.
Alpha ALPHA=.
Mean MEAN=.
Standard Deviation STDDEV=.

TEST=T DIST=LOGNORMAL Power POWER=.
Sample size NTOTAL=.
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Table 89.13 continued

Analyses Solve For Syntax

TEST=EQUIV Power POWER=.
Sample size NTOTAL=.

CI=T Prob(width) PROBWIDTH=.
Sample size NTOTAL=.

Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test or requests a solution for alpha by specifying a
missing value (ALPHA=.). The default is 0.05, which corresponds to the usual 0.05 � 100% = 5%
level of significance. If the CI= and SIDES=1 options are used, then the value must be less than 0.5.
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 7216.

CI

CI=T
specifies an analysis of precision of the confidence interval for the mean. Instead of power, the relevant
probability for this analysis is the probability of achieving a desired precision. Specifically, it is the
probability that the half-width of the confidence interval will be at most the value specified by the
HALFWIDTH= option. If neither the CI= option nor the TEST= option is used, the default is TEST=T.

CV=number-list
specifies the coefficient of variation, defined as the ratio of the standard deviation to the mean on
the original data scale. You can use this option only with DIST=LOGNORMAL. For information
about specifying the number-list , see the section “Specifying Value Lists in Analysis Statements” on
page 7216.

DIST=LOGNORMAL | NORMAL
specifies the underlying distribution assumed for the test statistic. NORMAL corresponds the normal
distribution, and LOGNORMAL corresponds to the lognormal distribution. The default value is
NORMAL.

HALFWIDTH=number-list
specifies the desired confidence interval half-width. The half-width is defined as the distance between
the point estimate and a finite endpoint. This option can be used only with the CI=T analysis. For
information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 7216.

LOWER=number-list
specifies the lower equivalence bound for the mean. This option can be used only with the
TEST=EQUIV analysis. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 7216.
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MEAN=number-list
specifies the mean, in the original scale, or requests a solution for the mean by specifying a missing value
(MEAN=.). The mean is arithmetic if DIST=NORMAL and geometric if DIST=LOGNORMAL. This
option can be used only with the TEST=T and TEST=EQUIV analyses. For information about specify-
ing the number-list , see the section “Specifying Value Lists in Analysis Statements” on page 7216.

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 7219 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.

NTOTAL=number-list
specifies the sample size or requests a solution for the sample size by specifying a missing value
(NTOTAL=.). For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 7216.

NULLMEAN=number-list

NULLM=number-list
specifies the null mean, in the original scale (whether DIST=NORMAL or DIST=LOGNORMAL).
The default value is 0 when DIST=NORMAL and 1 when DIST=LOGNORMAL. This option can be
used only with the TEST=T analysis. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 7216.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

� SIDES=
� NULLMEAN=
� LOWER=
� UPPER=
� ALPHA=
� MEAN=
� HALFWIDTH=
� STDDEV=
� CV=
� NTOTAL=
� POWER=
� PROBTYPE=
� PROBWIDTH=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same order
in which their corresponding options are specified in the ONESAMPLEMEANS statement. The
OUTPUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order
in which their corresponding options are specified in the ONESAMPLEMEANS statement.
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POWER=number-list
specifies the desired power of the test or requests a solution for the power by specifying a missing
value (POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than
as a percentage. This option can be used only with the TEST=T and TEST=EQUIV analyses. For
information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 7216.

PROBTYPE=keyword-list
specifies the type of probability for the PROBWIDTH= option. A value of CONDITIONAL (the
default) indicates the conditional probability that the confidence interval half-width is at most the
value specified by the HALFWIDTH= option, given that the true mean is captured by the confidence
interval. A value of UNCONDITIONAL indicates the unconditional probability that the confidence
interval half-width is at most the value specified by the HALFWIDTH= option. You can use the alias
GIVENVALIDITY for CONDITIONAL. The PROBTYPE= option can be used only with the CI=T
analysis. For information about specifying the keyword-list , see the section “Specifying Value Lists in
Analysis Statements” on page 7216.

CONDITIONAL width probability conditional on interval containing the mean

UNCONDITIONAL unconditional width probability

PROBWIDTH=number-list
specifies the desired probability of obtaining a confidence interval half-width less than or equal to the
value specified by the HALFWIDTH= option. A missing value (PROBWIDTH=.) requests a solution
for this probability. The type of probability is controlled with the PROBTYPE= option. Values are
expressed as probabilities (for example, 0.9) rather than percentages. This option can be used only
with the CI=T analysis. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 7216.

SIDES=keyword-list
specifies the number of sides (or tails) and the direction of the statistical test or confidence interval.
For information about specifying the keyword-list , see the section “Specifying Value Lists in Analysis
Statements” on page 7216. Valid keywords and their interpretation for the TEST= analyses are as
follows:

1 specifies a one-sided test, with the alternative hypothesis in the same direction as the effect.

2 specifies a two-sided test.

U specifies an upper one-sided test, with the alternative hypothesis indicating a mean greater than
the null value.

L specifies a lower one-sided test, with the alternative hypothesis indicating a mean less than the
null value.

For confidence intervals, SIDES=U refers to an interval between the lower confidence limit and infinity,
and SIDES=L refers to an interval between minus infinity and the upper confidence limit. For both of
these cases and SIDES=1, the confidence interval computations are equivalent. The SIDES= option
can be used only with the TEST=T and CI=T analyses. By default, SIDES=2.
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STDDEV=number-list

STD=number-list
specifies the standard deviation, or requests a solution for the standard deviation by specifying a
missing value (STDDEV=.). You can use this option only with DIST=NORMAL. For information
about specifying the number-list , see the section “Specifying Value Lists in Analysis Statements” on
page 7216.

TEST=EQUIV | T

TEST
specifies the statistical analysis. TEST=EQUIV specifies an equivalence test of the mean by using a
two one-sided tests (TOST) analysis (Schuirmann 1987). TEST or TEST=T (the default) specifies a t
test on the mean. If neither the TEST= option nor the CI= option is used, the default is TEST=T.

UPPER=number-list
specifies the upper equivalence bound for the mean, in the original scale (whether DIST=NORMAL
or DIST=LOGNORMAL). This option can be used only with the TEST=EQUIV analysis. For
information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 7216.

Restrictions on Option Combinations

To define the analysis, choose one of the following parameterizations:

� a statistical test (by using the TEST= option)

� confidence interval precision (by using the CI= option)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses that are supported in the ONESAMPLEMEANS
statement.

One-Sample t Test
The following statements demonstrate a power computation for the one-sample t test. Default values for
the DIST=, SIDES=, NULLMEAN=, and ALPHA= options specify a two-sided test for zero mean with a
normal distribution and a significance level of 0.05.

proc power;
onesamplemeans test=t

mean = 7
stddev = 3
ntotal = 50
power = .;

run;

One-Sample t Test with Lognormal Data
The following statements demonstrate a sample size computation for the one-sample t test for lognormal data.
Default values for the SIDES=, NULLMEAN=, and ALPHA= options specify a two-sided test for unit mean
with a significance level of 0.05.
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proc power;
onesamplemeans test=t dist=lognormal

mean = 7
cv = 0.8
ntotal = .
power = 0.9;

run;

Equivalence Test for Mean of Normal Data
The following statements demonstrate a power computation for the TOST equivalence test for a normal mean.
Default values for the DIST= and ALPHA= options specify a normal distribution and a significance level of
0.05.

proc power;
onesamplemeans test=equiv

lower = 2
upper = 7
mean = 4
stddev = 3
ntotal = 100
power = .;

run;

Equivalence Test for Mean of Lognormal Data
The following statements demonstrate a sample size computation for the TOST equivalence test for a
lognormal mean. The default of ALPHA=0.05 specifies a significance level of 0.05.

proc power;
onesamplemeans test=equiv dist=lognormal

lower = 1
upper = 5
mean = 3
cv = 0.6
ntotal = .
power = 0.85;

run;

Confidence Interval for Mean
By default CI=T analyzes the conditional probability of obtaining the desired precision, given that the interval
contains the true mean, as in the following statements. The defaults of SIDES=2 and ALPHA=0.05 specify a
two-sided interval with a confidence level of 0.95.

proc power;
onesamplemeans ci = t

halfwidth = 14
stddev = 8
ntotal = 50
probwidth = .;

run;
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ONEWAYANOVA Statement
ONEWAYANOVA < options > ;

The ONEWAYANOVA statement performs power and sample size analyses for one-degree-of-freedom
contrasts and the overall F test in one-way analysis of variance.

Summary of Options

Table 89.14 summarizes the options available in the ONEWAYANOVA statement.

Table 89.14 ONEWAYANOVA Statement Options

Option Description

Define analysis
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
CONTRAST= Specifies coefficients for single-degree-of-freedom hypothesis tests
NULLCONTRAST= Specifies the null value of the contrast
SIDES= Specifies the number of sides and the direction of the statistical test

Specify effect
GROUPMEANS= Specifies the group means

Specify variability
STDDEV= Specifies the error standard deviation

Specify sample size and allocation
GROUPNS= Specifies the group sample sizes
GROUPWEIGHTS= Specifies the sample size allocation weights for the groups
NFRACTIONAL Enables fractional input and output for sample sizes
NPERGROUP= Specifies the common sample size per group
NTOTAL= Specifies the sample size

Specify power
POWER= Specifies the desired power of the test
Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 89.15 summarizes the valid result parameters for different analyses in the ONEWAYANOVA statement.

Table 89.15 Summary of Result Parameters in the
ONEWAYANOVA Statement

Analyses Solve For Syntax

TEST=CONTRAST Power POWER=.
Sample size NTOTAL=.

NPERGROUP==.



7156 F Chapter 89: The POWER Procedure

Table 89.15 continued

Analyses Solve For Syntax

TEST=OVERALL Power POWER=.
Sample size NTOTAL=.

NPERGROUP==.

Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test. The default is 0.05, which corresponds to the
usual 0.05 � 100% = 5% level of significance. For information about specifying the number-list , see
the section “Specifying Value Lists in Analysis Statements” on page 7216.

CONTRAST= ( values ) < ( . . . values ) >
specifies coefficients for single-degree-of-freedom hypothesis tests. You must provide a coefficient
for every mean appearing in the GROUPMEANS= option. Specify multiple contrasts either with
additional sets of coefficients or with additional CONTRAST= options. For example, you can specify
two different contrasts of five means by using the following:

CONTRAST = (1 -1 0 0 0) (1 0 -1 0 0)

GROUPMEANS=grouped-number-list

GMEANS=grouped-number-list
specifies the group means. This option is used to implicitly set the number of groups. For informa-
tion about specifying the grouped-number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 7216.

GROUPNS=grouped-number-list

GNS=grouped-number-list
specifies the group sample sizes. The number of groups represented must be the same as with the
GROUPMEANS= option. For information about specifying the grouped-number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 7216.

GROUPWEIGHTS=grouped-number-list

GWEIGHTS=grouped-number-list
specifies the sample size allocation weights for the groups. This option controls how the total sample
size is divided between the groups. Each set of values across all groups represents relative allocation
weights. Additionally, if the NFRACTIONAL option is not used, the total sample size is restricted to be
equal to a multiple of the sum of the group weights (so that the resulting design has an integer sample
size for each group while adhering exactly to the group allocation weights). The number of groups
represented must be the same as with the GROUPMEANS= option. Values must be integers unless
the NFRACTIONAL option is used. The default value is 1 for each group, amounting to a balanced
design. For information about specifying the grouped-number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 7216.
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NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 7219 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.

NPERGROUP=number-list

NPERG=number-list
specifies the common sample size per group or requests a solution for the common sample size per
group by specifying a missing value (NPERGROUP==.). Use of this option implicitly specifies a
balanced design. For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 7216.

NTOTAL=number-list
specifies the sample size or requests a solution for the sample size by specifying a missing value
(NTOTAL=.). For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 7216.

NULLCONTRAST=number-list

NULLC=number-list
specifies the null value of the contrast. The default value is 0. This option can be used only with
the TEST=CONTRAST analysis. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 7216.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

� CONTRAST=
� SIDES=
� NULLCONTRAST=
� ALPHA=
� GROUPMEANS=
� STDDEV=
� GROUPWEIGHTS=
� NTOTAL=
� NPERGROUP==
� GROUPNS=
� POWER=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same order
in which their corresponding options are specified in the ONEWAYANOVA statement. The OUT-
PUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order in
which their corresponding options are specified in the ONEWAYANOVA statement.
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POWER=number-list
specifies the desired power of the test or requests a solution for the power by specifying a missing
value (POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 7216.

SIDES=keyword-list
specifies the number of sides (or tails) and the direction of the statistical test. For information about
specifying the keyword-list , see the section “Specifying Value Lists in Analysis Statements” on
page 7216. You can specify the following keywords:

1 specifies a one-sided test, with the alternative hypothesis in the same direction as the effect.

2 specifies a two-sided test.

U specifies an upper one-sided test, with the alternative hypothesis indicating an effect greater
than the null value.

L specifies a lower one-sided test, with the alternative hypothesis indicating an effect less than the
null value.

You can use this option only with the TEST=CONTRAST analysis. By default, SIDES=2.

STDDEV=number-list

STD=number-list
specifies the error standard deviation. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 7216.

TEST=CONTRAST | OVERALL
specifies the statistical analysis. TEST=CONTRAST specifies a one-degree-of-freedom test of a
contrast of means. The test is the usual F test for the two-sided case and the usual t test for the
one-sided case. TEST=OVERALL specifies the overall F test of equality of all means. The default is
TEST=CONTRAST if the CONTRAST= option is used, and TEST=OVERALL otherwise.

Restrictions on Option Combinations

To specify the sample size and allocation, choose one of the following parameterizations:

� sample size per group in a balanced design (by using the NPERGROUP== option)

� total sample size and allocation weights (by using the NTOTAL= and GROUPWEIGHTS= options)

� individual group sample sizes (by using the GROUPNS= option)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses that are supported in the ONEWAYANOVA
statement.
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One-Degree-of-Freedom Contrast
You can use the NPERGROUP== option in a balanced design, as in the following statements. Default values
for the SIDES=, NULLCONTRAST=, and ALPHA= options specify a two-sided test for a contrast value of
0 with a significance level of 0.05.

proc power;
onewayanova test=contrast

contrast = (1 0 -1)
groupmeans = 3 | 7 | 8
stddev = 4
npergroup = 50
power = .;

run;

You can also specify an unbalanced design with the NTOTAL= and GROUPWEIGHTS= options:

proc power;
onewayanova test=contrast

contrast = (1 0 -1)
groupmeans = 3 | 7 | 8
stddev = 4
groupweights = (1 2 2)
ntotal = .
power = 0.9;

run;

Another way to specify the sample sizes is with the GROUPNS= option:

proc power;
onewayanova test=contrast

contrast = (1 0 -1)
groupmeans = 3 | 7 | 8
stddev = 4
groupns = (20 40 40)
power = .;

run;

Overall F Test
The following statements demonstrate a power computation for the overall F test in a one-way ANOVA. The
default of ALPHA=0.05 specifies a significance level of 0.05.

proc power;
onewayanova test=overall

groupmeans = 3 | 7 | 8
stddev = 4
npergroup = 50
power = .;

run;
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PAIREDFREQ Statement
PAIREDFREQ < options > ;

The PAIREDFREQ statement performs power and sample size analyses for McNemar’s test for paired
proportions.

Summary of Options

Table 89.16 summarizes the options available in the PAIREDFREQ statement.

Table 89.16 PAIREDFREQ Statement Options

Option Description

Define analysis
DIST= Specifies the underlying distribution assumed for the test statistic
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
NULLDISCPROPRATIO= Specifies the null value of the ratio of discordant proportions
SIDES= Specifies the number of sides and the direction of the statistical test or

confidence interval

Specify effects
CORR= Specifies the correlation � between members of a pair
DISCPROPDIFF= Specifies the discordant proportion difference p01 � p10
DISCPROPORTIONS= Specifies the two discordant proportions, p10 and p01
DISCPROPRATIO= Specifies the ratio p01=p10
ODDSRATIO= Specifies the odds ratio Œp�1=.1 � p�1/� = Œp1�=.1 � p1�/�
PAIREDPROPORTIONS= Specifies the two paired proportions, p1� and p�1
PROPORTIONDIFF= Specifies the proportion difference p�1 � p1�
REFPROPORTION= Specifies either the reference first proportion p1� or the reference discordant

proportion p10
RELATIVERISK= Specifies the relative risk p�1=p1�
TOTALPROPDISC= Specifies the discordant proportion sum, p10 C p01
Specify sample size
NFRACTIONAL Enables fractional input and output for sample sizes
NPAIRS= Specifies the total number of proportion pairs

Specify power
POWER= Specifies the desired power of the test

Choose computational method
METHOD= Specifies the computational method

Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 89.17 summarizes the valid result parameters in the PAIREDFREQ statement.
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Table 89.17 Summary of Result Parameters in the
PAIREDFREQ Statement

Analyses Solve For Syntax

TEST=MCNEMAR METHOD=CONNOR Power POWER=.
Sample size NPAIRS=.

TEST=MCNEMAR METHOD=EXACT Power POWER=.

TEST=MCNEMAR METHOD=MIETTINEN Power POWER=.
Sample size NPAIRS=.

Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test. The default is 0.05, which corresponds to the
usual 0.05 � 100% = 5% level of significance. For information about specifying the number-list , see
the section “Specifying Value Lists in Analysis Statements” on page 7216.

CORR=number-list
specifies the correlation � between members of a pair. For information about specifying the number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 7216.

DISCPROPORTIONS=grouped-number-list
DISCPS=grouped-number-list

specifies the two discordant proportions, p10 and p01. For information about specifying the grouped-
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 7216.

DISCPROPDIFF=number-list
DISCPDIFF=number-list

specifies the difference p01 � p10 between discordant proportions. For information about specifying
the number-list , see the section “Specifying Value Lists in Analysis Statements” on page 7216.

DISCPROPRATIO=number-list
DISCPRATIO=number-list

specifies the ratio p01=p10 of discordant proportions. For information about specifying the number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 7216.

DIST=EXACT_COND | NORMAL
specifies the underlying distribution assumed for the test statistic. EXACT_COND corresponds to the
exact conditional test, based on the exact binomial distribution of the two types of discordant pairs
given the total number of discordant pairs. NORMAL corresponds to the conditional test based on the
normal approximation to the binomial distribution of the two types of discordant pairs given the total
number of discordant pairs. The default value is EXACT_COND.

METHOD=CONNOR | EXACT | MIETTINEN
specifies the computational method. METHOD=EXACT (the default) uses the exact binomial
distributions of the total number of discordant pairs and the two types of discordant pairs.
METHOD=CONNOR uses an approximation from Connor (1987), and METHOD=MIETTINEN uses
an approximation from Miettinen (1968). The CONNOR and MIETTINEN methods are valid only for
DIST=NORMAL.
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NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 7219 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option. This option cannot be used with METHOD=EXACT.

NPAIRS=number-list
specifies the total number of proportion pairs (concordant and discordant) or requests a solution for
the number of pairs by specifying a missing value (NPAIRS=.). For information about specifying the
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 7216.

NULLDISCPROPRATIO=number-list

NULLDISCPRATIO=number-list

NULLRATIO=number-list

NULLR=number-list
specifies the null value of the ratio of discordant proportions. The default value is 1. For information
about specifying the number-list , see the section “Specifying Value Lists in Analysis Statements” on
page 7216.

ODDSRATIO=number-list

OR=number-list
specifies the odds ratio Œp�1=.1 � p�1/� = Œp1�=.1 � p1�/�. For information about specifying the number-
list , see the section “Specifying Value Lists in Analysis Statements” on page 7216.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

� SIDES=
� NULLDISCPROPRATIO=
� ALPHA=
� PAIREDPROPORTIONS=
� PROPORTIONDIFF=
� ODDSRATIO=
� RELATIVERISK=
� CORR=
� DISCPROPORTIONS=
� DISCPROPDIFF=
� TOTALPROPDISC=
� REFPROPORTION=
� DISCPROPRATIO=
� NPAIRS=
� POWER=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same order
in which their corresponding options are specified in the PAIREDFREQ statement. The OUT-
PUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order
in which their corresponding options are specified in the PAIREDFREQ statement.



PAIREDFREQ Statement F 7163

PAIREDPROPORTIONS=grouped-number-list

PPROPORTIONS=grouped-number-list

PAIREDPS=grouped-number-list

PPS=grouped-number-list
specifies the two paired proportions, p1� and p�1. For information about specifying the grouped-
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 7216.

POWER=number-list
specifies the desired power of the test or requests a solution for the power by specifying a missing
value (POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 7216.

PROPORTIONDIFF=number-list

PDIFF=number-list
specifies the proportion difference p�1 � p1�. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 7216.

REFPROPORTION=number-list

REFP=number-list
specifies either the reference first proportion p1� (when used in conjunction with the PROPORTION-
DIFF=, ODDSRATIO=, or RELATIVERISK= option) or the reference discordant proportion p10
(when used in conjunction with the DISCPROPDIFF= or DISCPROPRATIO= option). For information
about specifying the number-list , see the section “Specifying Value Lists in Analysis Statements” on
page 7216.

RELATIVERISK=number-list

RR=number-list
specifies the relative risk p�1=p1�. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 7216.

SIDES=keyword-list
specifies the number of sides (or tails) and the direction of the statistical test or confidence interval.
For information about specifying the keyword-list , see the section “Specifying Value Lists in Analysis
Statements” on page 7216. You can specify the following keywords:

1 specifies a one-sided test, with the alternative hypothesis in the same direction as the effect.

2 specifies a two-sided test.

U specifies an upper one-sided test, with the alternative hypothesis indicating an effect greater
than the null value.

L specifies a lower one-sided test, with the alternative hypothesis indicating an effect less than the
null value.

If the effect size is zero, then SIDES=1 is not permitted; instead, specify the direction of the test
explicitly in this case with either SIDES=L or SIDES=U. By default, SIDES=2.
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TEST=MCNEMAR
specifies the McNemar test of paired proportions. This is the default test option.

TOTALPROPDISC=number-list

TOTALPDISC=number-list

PDISC=number-list
specifies the sum of the two discordant proportions, p10 C p01. For information about specifying the
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 7216.

Restrictions on Option Combinations

To specify the proportions, choose one of the following parameterizations:

� discordant proportions (using the DISCPROPORTIONS= option)

� difference and sum of discordant proportions (using the DISCPROPDIFF= and TOTAL-
PROPDISC=options)

� difference of discordant proportions and reference discordant proportion (using the DISCPROPDIFF=
and REFPROPORTION= options)

� ratio of discordant proportions and reference discordant proportion (using the DISCPROPRATIO= and
REFPROPORTION= options)

� ratio and sum of discordant proportions (using the DISCPROPRATIO= and TOTAL-
PROPDISC=options)

� paired proportions and correlation (using the PAIREDPROPORTIONS= and CORR= options)

� proportion difference, reference proportion, and correlation (using the PROPORTIONDIFF=, REF-
PROPORTION=, and CORR= options)

� odds ratio, reference proportion, and correlation (using the ODDSRATIO=, REFPROPORTION=, and
CORR= options)

� relative risk, reference proportion, and correlation (using the RELATIVERISK=, REFPROPORTION=,
and CORR= options)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses that are supported in the PAIREDFREQ
statement.

McNemar Exact Conditional Test
You can express effects in terms of the individual discordant proportions, as in the following statements.
Default values for the TEST=, SIDES=, ALPHA=, and NULLDISCPROPRATIO= options specify a two-
sided McNemar test for no effect with a significance level of 0.05.
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proc power;
pairedfreq dist=exact_cond

discproportions = 0.15 | 0.45
npairs = 80
power = .;

run;

You can also express effects in terms of the difference and sum of discordant proportions:

proc power;
pairedfreq dist=exact_cond

discpropdiff = 0.3
totalpropdisc = 0.6
npairs = 80
power = .;

run;

You can also express effects in terms of the difference of discordant proportions and the reference discordant
proportion:

proc power;
pairedfreq dist=exact_cond

discpropdiff = 0.3
refproportion = 0.15
npairs = 80
power = .;

run;

You can also express effects in terms of the ratio of discordant proportions and the denominator of the ratio:

proc power;
pairedfreq dist=exact_cond

discpropratio = 3
refproportion = 0.15
npairs = 80
power = .;

run;

You can also express effects in terms of the ratio and sum of discordant proportions:

proc power;
pairedfreq dist=exact_cond

discpropratio = 3
totalpropdisc = 0.6
npairs = 80
power = .;

run;

You can also express effects in terms of the paired proportions and correlation:

proc power;
pairedfreq dist=exact_cond

pairedproportions = 0.6 | 0.8
corr = 0.4
npairs = 45
power = .;

run;
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You can also express effects in terms of the proportion difference, reference proportion, and correlation:

proc power;
pairedfreq dist=exact_cond

proportiondiff = 0.2
refproportion = 0.6
corr = 0.4
npairs = 45
power = .;

run;

You can also express effects in terms of the odds ratio, reference proportion, and correlation:

proc power;
pairedfreq dist=exact_cond

oddsratio = 2.66667
refproportion = 0.6
corr = 0.4
npairs = 45
power = .;

run;

You can also express effects in terms of the relative risk, reference proportion, and correlation:

proc power;
pairedfreq dist=exact_cond

relativerisk = 1.33333
refproportion = 0.6
corr = 0.4
npairs = 45
power = .;

run;

McNemar Normal Approximation Test
The following statements demonstrate a sample size computation for the normal-approximate McNemar test.
The default value for the METHOD= option specifies an exact sample size computation. Default values for
the TEST=, SIDES=, ALPHA=, and NULLDISCPROPRATIO= options specify a two-sided McNemar test
for no effect with a significance level of 0.05.

proc power;
pairedfreq dist=normal method=connor

discproportions = 0.15 | 0.45
npairs = .
power = .9;

run;

PAIREDMEANS Statement
PAIREDMEANS < options > ;

The PAIREDMEANS statement performs power and sample size analyses for t tests, equivalence tests, and
confidence interval precision involving paired samples.
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Summary of Options

Table 89.16 summarizes the options available in the PAIREDMEANS statement.

Table 89.18 PAIREDMEANS Statement Options

Option Description

Define analysis
CI= Specifies an analysis of precision of the confidence interval for the mean

difference
DIST= Specifies the underlying distribution assumed for the test statistic
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
LOWER= Specifies the lower equivalence bound
NULLDIFF= Specifies the null mean difference
NULLRATIO= Specifies the null mean ratio
SIDES= Specifies the number of sides and the direction of the statistical test or

confidence interval
UPPER= Specifies the upper equivalence bound

Specify effects
HALFWIDTH= Specifies the desired confidence interval half-width
MEANDIFF= Specifies the mean difference
MEANRATIO= Specifies the geometric mean ratio, 2=1
PAIREDMEANS= Specifies the two paired means

Specify variability
CORR= Specifies the correlation between members of a pair
CV= Specifies the common coefficient of variation
PAIREDCVS= Specifies the coefficient of variation for each member of a pair
PAIREDSTDDEVS= Specifies the standard deviation of each member of a pair
STDDEV= Specifies the common standard deviation

Specify sample size
NFRACTIONAL Enables fractional input and output for sample sizes
NPAIRS= Specifies the number of pairs

Specify power and related probabilities
POWER= Specifies the desired power of the test
PROBTYPE= Specifies the type of probability for the PROBWIDTH= option
PROBWIDTH= Specifies the probability of obtaining a confidence interval half-width less

than or equal to the value specified by the HALFWIDTH=

Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 89.19 summarizes the valid result parameters for different analyses in the PAIREDMEANS statement.
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Table 89.19 Summary of Result Parameters in the
PAIREDMEANS Statement

Analyses Solve For Syntax

TEST=DIFF Power POWER=.
Sample size NPAIRS=.

TEST=RATIO Power POWER=.
Sample size NPAIRS=.

TEST=EQUIV_DIFF Power POWER=.
Sample size NPAIRS=.

TEST=EQUIV_RATIO Power POWER=.
Sample size NPAIRS=.

CI=DIFF Prob(width) PROBWIDTH=.
Sample size NPAIRS=.

Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test. The default is 0.05, which corresponds to the
usual 0.05 � 100% = 5% level of significance. If the CI= and SIDES=1 options are used, then the value
must be less than 0.5. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 7216.

CI

CI=DIFF
specifies an analysis of precision of the confidence interval for the mean difference. Instead of power,
the relevant probability for this analysis is the probability of achieving a desired precision. Specifically,
it is the probability that the half-width of the observed confidence interval will be at most the value
specified by the HALFWIDTH= option. If neither the CI= option nor the TEST= option is used, the
default is TEST=DIFF.

CORR=number-list
specifies the correlation between members of a pair. For tests that assume lognormal data
(DIST=LOGNORMAL, or TEST=RATIO or TEST=EQUIV_RATIO), values of the CORR= op-
tion are restricted to the range .�L; �U /, where

�L D

exp
�
�
�
log.CV21 C 1/ log.CV

2
2 C 1/

� 1
2

�
� 1

CV1CV2

�U D

exp
��

log.CV21 C 1/ log.CV
2
2 C 1/

� 1
2

�
� 1

CV1CV2

and CV1 are the CV2 coefficient of variation values specified by the CV= or PAIREDCVS= option.
See “Paired t Test for Mean Ratio with Lognormal Data (TEST=RATIO)” on page 7259 for more
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information about this restriction on correlation values. For information about specifying the number-
list , see the section “Specifying Value Lists in Analysis Statements” on page 7216.

CV=number-list
specifies the coefficient of variation that is assumed to be common to both members of a pair. The
coefficient of variation is defined as the ratio of the standard deviation to the mean on the original data
scale. You can use this option only with DIST=LOGNORMAL. For information about specifying the
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 7216.

DIST=LOGNORMAL | NORMAL
specifies the underlying distribution assumed for the test statistic. NORMAL corresponds the normal
distribution, and LOGNORMAL corresponds to the lognormal distribution. The default value (also
the only acceptable value in each case) is NORMAL for TEST=DIFF, TEST=EQUIV_DIFF, and
CI=DIFF; and LOGNORMAL for TEST=RATIO and TEST=EQUIV_RATIO.

HALFWIDTH=number-list
specifies the desired confidence interval half-width. The half-width is defined as the distance between
the point estimate and a finite endpoint. This option can be used only with the CI=DIFF analysis.
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 7216.

LOWER=number-list
specifies the lower equivalence bound for the mean difference or mean ratio, in the original scale
(whether DIST=NORMAL or DIST=LOGNORMAL). This option can be used only with the
TEST=EQUIV_DIFF and TEST=EQUIV_RATIO analyses. For information about specifying the
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 7216.

MEANDIFF=number-list
specifies the mean difference, defined as the mean of the difference between the second and first mem-
bers of a pair, �2 � �1. This option can be used only with the TEST=DIFF and TEST=EQUIV_DIFF
analyses. When TEST=EQUIV_DIFF, the mean difference is interpreted as the treatment mean minus
the reference mean. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 7216.

MEANRATIO=number-list
specifies the geometric mean ratio, defined as 2=1. This option can be used only with the
TEST=RATIO and TEST=EQUIV_RATIO analyses. When TEST=EQUIV_RATIO, the mean ratio is
interpreted as the treatment mean divided by the reference mean. For information about specifying the
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 7216.

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 7219 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.

NPAIRS=number-list
specifies the number of pairs or requests a solution for the number of pairs by specifying a missing
value (NPAIRS=.). For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 7216.
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NULLDIFF=number-list

NULLD=number-list
specifies the null mean difference. The default value is 0. This option can be used only with the
TEST=DIFF analysis. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 7216.

NULLRATIO=number-list

NULLR=number-list
specifies the null mean ratio. The default value is 1. This option can be used only with the
TEST=RATIO analysis. For information about specifying the number-list , see the section “Spec-
ifying Value Lists in Analysis Statements” on page 7216.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

� SIDES=
� NULLDIFF=
� NULLRATIO=
� LOWER=
� UPPER=
� ALPHA=
� PAIREDMEANS=
� MEANDIFF=
� MEANRATIO=
� HALFWIDTH=
� STDDEV=
� PAIREDSTDDEVS=
� CV=
� PAIREDCVS=
� CORR=
� NPAIRS=
� POWER=
� PROBTYPE=
� PROBWIDTH=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same order
in which their corresponding options are specified in the PAIREDMEANS statement. The OUT-
PUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order in
which their corresponding options are specified in the PAIREDMEANS statement.

PAIREDCVS=grouped-number-list
specifies the coefficient of variation for each member of a pair. Unlike the CV= option, the PAIRED-
CVS= option supports different values for each member of a pair. The coefficient of variation is
defined as the ratio of the standard deviation to the mean on the original data scale. Values must be
nonnegative (unless both are equal to zero, which is permitted). This option can be used only with
DIST=LOGNORMAL. For information about specifying the grouped-number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 7216.
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PAIREDMEANS=grouped-number-list

PMEANS=grouped-number-list
specifies the two paired means, in the original scale. The means are arithmetic if DIST=NORMAL and
geometric if DIST=LOGNORMAL. This option cannot be used with the CI=DIFF analysis. When
TEST=EQUIV_DIFF, the means are interpreted as the reference mean (first) and the treatment mean
(second). For information about specifying the grouped-number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 7216.

PAIREDSTDDEVS=grouped-number-list

PAIREDSTDS=grouped-number-list

PSTDDEVS=grouped-number-list

PSTDS=grouped-number-list
specifies the standard deviation of each member of a pair. Unlike the STDDEV= option, the PAIRED-
STDDEVS= option supports different values for each member of a pair. This option can be used only
with DIST=NORMAL. For information about specifying the grouped-number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 7216.

POWER=number-list
specifies the desired power of the test or requests a solution for the power by specifying a missing
value (POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. This option cannot be used with the CI=DIFF analysis. For information about specifying
the number-list , see the section “Specifying Value Lists in Analysis Statements” on page 7216.

PROBTYPE=keyword-list
specifies the type of probability for the PROBWIDTH= option. A value of CONDITIONAL (the
default) indicates the conditional probability that the confidence interval half-width is at most the
value specified by the HALFWIDTH= option, given that the true mean difference is captured by the
confidence interval. A value of UNCONDITIONAL indicates the unconditional probability that the
confidence interval half-width is at most the value specified by the HALFWIDTH= option. you can
use the alias GIVENVALIDITY for CONDITIONAL. The PROBTYPE= option can be used only with
the CI=DIFF analysis. For information about specifying the keyword-list , see the section “Specifying
Value Lists in Analysis Statements” on page 7216.

CONDITIONAL width probability conditional on interval containing the mean

UNCONDITIONAL unconditional width probability

PROBWIDTH=number-list
specifies the desired probability of obtaining a confidence interval half-width less than or equal to the
value specified by the HALFWIDTH= option. A missing value (PROBWIDTH=.) requests a solution
for this probability. The type of probability is controlled with the PROBTYPE= option. Values are
expressed as probabilities (for example, 0.9) rather than percentages. This option can be used only with
the CI=DIFF analysis. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 7216.

SIDES=keyword-list
specifies the number of sides (or tails) and the direction of the statistical test or confidence interval.
For information about specifying the keyword-list , see the section “Specifying Value Lists in Analysis
Statements” on page 7216. Valid keywords and their interpretation for the TEST= analyses are as
follows:
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1 specifies a one-sided test, with the alternative hypothesis in the same direction as the effect.

2 specifies a two-sided test.

U specifies an upper one-sided test, with the alternative hypothesis indicating an effect greater
than the null value.

L specifies a lower one-sided test, with the alternative hypothesis indicating an effect less than the
null value.

For confidence intervals, SIDES=U refers to an interval between the lower confidence limit and infinity,
and SIDES=L refers to an interval between minus infinity and the upper confidence limit. For both
of these cases and SIDES=1, the confidence interval computations are equivalent. You cannot use
the SIDES= option with the TEST=EQUIV_DIFF and TEST=EQUIV_RATIO analyses. By default,
SIDES=2.

STDDEV=number-list

STD=number-list
specifies the standard deviation assumed to be common to both members of a pair. This option can be
used only with DIST=NORMAL. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 7216.

TEST=DIFF | EQUIV_DIFF | EQUIV_RATIO | RATIO

TEST
specifies the statistical analysis. TEST or TEST=DIFF (the default) specifies a paired t test on the
mean difference. TEST=EQUIV_DIFF specifies an additive equivalence test of the mean difference by
using a two one-sided tests (TOST) analysis (Schuirmann 1987). TEST=EQUIV_RATIO specifies a
multiplicative equivalence test of the mean ratio by using a TOST analysis. TEST=RATIO specifies a
paired t test on the geometric mean ratio. If neither the TEST= option nor the CI= option is used, the
default is TEST=DIFF.

UPPER=number-list
specifies the upper equivalence bound for the mean difference or mean ratio, in the original scale
(whether DIST=NORMAL or DIST=LOGNORMAL). This option can be used only with the
TEST=EQUIV_DIFF and TEST=EQUIV_RATIO analyses. For information about specifying the
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 7216.

Restrictions on Option Combinations

To define the analysis, choose one of the following parameterizations:

� a statistical test (by using the TEST= option)

� confidence interval precision (by using the CI= option)

To specify the means, choose one of the following parameterizations:

� individual means (by using the PAIREDMEANS= option)

� mean difference (by using the MEANDIFF= option)
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� mean ratio (by using the MEANRATIO= option)

To specify the coefficient of variation, choose one of the following parameterizations:

� common coefficient of variation (by using the CV= option)

� individual coefficients of variation (by using the PAIREDCVS= option)

To specify the standard deviation, choose one of the following parameterizations:

� common standard deviation (by using the STDDEV= option)

� individual standard deviations (by using the PAIREDSTDDEVS= option)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses that are supported in the PAIREDMEANS
statement.

Paired t Test
You can express effects in terms of the mean difference and variability in terms of a correlation and common
standard deviation, as in the following statements. Default values for the DIST=, SIDES=, NULLDIFF=, and
ALPHA= options specify a two-sided test for no difference with a normal distribution and a significance
level of 0.05.

proc power;
pairedmeans test=diff

meandiff = 7
corr = 0.4
stddev = 12
npairs = 50
power = .;

run;

You can also express effects in terms of individual means and variability in terms of correlation and individual
standard deviations:

proc power;
pairedmeans test=diff

pairedmeans = 8 | 15
corr = 0.4
pairedstddevs = (7 12)
npairs = .
power = 0.9;

run;

Paired t Test of Mean Ratio with Lognormal Data
You can express variability in terms of correlation and a common coefficient of variation, as in the following
statements. Defaults for the DIST=, SIDES=, NULLRATIO= and ALPHA= options specify a two-sided test
of mean ratio = 1 assuming a lognormal distribution and a significance level of 0.05.
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proc power;
pairedmeans test=ratio

meanratio = 7
corr = 0.3
cv = 1.2
npairs = 30
power = .;

run;

You can also express variability in terms of correlation and individual coefficients of variation:

proc power;
pairedmeans test=ratio

meanratio = 7
corr = 0.3
pairedcvs = 0.8 | 0.9
npairs = 30
power = .;

run;

Additive Equivalence Test for Mean Difference with Normal Data
The following statements demonstrate a sample size computation for a TOST equivalence test for a normal
mean difference. Default values for the DIST= and ALPHA= options specify a normal distribution and a
significance level of 0.05.

proc power;
pairedmeans test=equiv_diff

lower = 2
upper = 5
meandiff = 4
corr = 0.2
stddev = 8
npairs = .
power = 0.9;

run;

Multiplicative Equivalence Test for Mean Ratio with Lognormal Data
The following statements demonstrate a power computation for a TOST equivalence test for a lognormal
mean ratio. Default values for the DIST= and ALPHA= options specify a lognormal distribution and a
significance level of 0.05.

proc power;
pairedmeans test=equiv_ratio

lower = 3
upper = 7
meanratio = 5
corr = 0.2
cv = 1.1
npairs = 50
power = .;

run;
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Confidence Interval for Mean Difference
By default CI=DIFF analyzes the conditional probability of obtaining the desired precision, given that the
interval contains the true mean difference, as in the following statements. The defaults of SIDES=2 and
ALPHA=0.05 specify a two-sided interval with a confidence level of 0.95.

proc power;
pairedmeans ci = diff

halfwidth = 4
corr = 0.35
stddev = 8
npairs = 30
probwidth = .;

run;

PLOT Statement
PLOT < plot-options > < / graph-options > ;

The PLOT statement produces a graph or set of graphs for the sample size analysis defined by the previous
analysis statement. The plot-options define the plot characteristics, and the graph-options are SAS/GRAPH-
style options. If ODS Graphics is enabled, then the PLOT statement uses ODS Graphics to create graphs. For
example:

ods graphics on;

proc power;
onesamplemeans

mean = 5 10
ntotal = 150
stddev = 30 50
power = .;

plot x=n min=100 max=200;
run;

ods graphics off;

Otherwise, traditional graphics are produced. For example:

ods graphics off;

proc power;
onesamplemeans

mean = 5 10
ntotal = 150
stddev = 30 50
power = .;

plot x=n min=100 max=200;
run;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and Disabling
ODS Graphics” on page 609 in Chapter 21, “Statistical Graphics Using ODS.”
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Options

You can specify the following plot-options in the PLOT statement.

INTERPOL=JOIN | NONE
specifies the type of curve to draw through the computed points. The INTERPOL=JOIN option
connects computed points by straight lines. The INTERPOL=NONE option leaves computed points
unconnected.

KEY=BYCURVE < ( bycurve-options ) >

KEY=BYFEATURE < ( byfeature-options ) >

KEY=ONCURVES
specifies the style of key (or “legend”) for the plot. The default is KEY=BYFEATURE, which specifies
a key with a column of entries for each plot feature (line style, color, and/or symbol). Each entry shows
the mapping between a value of the feature and the value(s) of the analysis parameter(s) linked to that
feature. The KEY=BYCURVE option specifies a key with each row identifying a distinct curve in the
plot. The KEY=ONCURVES option places a curve-specific label adjacent to each curve.

You can specify the following byfeature-options in parentheses after the KEY=BYCURVE option.

NUMBERS=OFF | ON
specifies how the key should identify curves. If NUMBERS=OFF, then the key includes symbol,
color, and line style samples to identify the curves. If NUMBERS=ON, then the key includes
numbers matching numeric labels placed adjacent to the curves. The default is NUMBERS=ON.

POS=BOTTOM | INSET
specifies the position of the key. The POS=BOTTOM option places the key below the X axis.
The POS=INSET option places the key inside the plotting region and attempts to choose the least
crowded corner. The default is POS=BOTTOM.

You can specify the following byfeature-options in parentheses after KEY=BYFEATURE option.

POS=BOTTOM | INSET
specifies the position of the key. The POS=BOTTOM option places the key below the X axis.
The POS=INSET option places the key inside the plotting region and attempts to choose the least
crowded corner. The default is POS=BOTTOM.

MARKERS=ANALYSIS | COMPUTED | NICE | NONE
specifies the locations for plotting symbols.

The MARKERS=ANALYSIS option places plotting symbols at locations that correspond to the values
of the relevant input parameter from the analysis statement preceding the PLOT statement.

The MARKERS=COMPUTED option (the default) places plotting symbols at the locations of actual
computed points from the sample size analysis.

The MARKERS=NICE option places plotting symbols at tick mark locations (corresponding to the
argument axis).

The MARKERS=NONE option disables plotting symbols.
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MAX=number | DATAMAX
specifies the maximum of the range of values for the parameter associated with the “argument” axis
(the axis that is not representing the parameter being solved for). The default is DATAMAX, which
specifies the maximum value that occurs for this parameter in the analysis statement that precedes the
PLOT statement.

MIN=number | DATAMIN
specifies the minimum of the range of values for the parameter associated with the “argument” axis
(the axis that is not representing the parameter being solved for). The default is DATAMIN, which
specifies the minimum value that occurs for this parameter in the analysis statement that precedes the
PLOT statement.

NPOINTS=number

NPTS=number
specifies the number of values for the parameter associated with the “argument” axis (the axis that is
not representing the parameter being solved for). You cannot use the NPOINTS= and STEP= options
simultaneously. The default value for typical situations is 20.

STEP=number
specifies the increment between values of the parameter associated with the “argument” axis (the axis
that is not representing the parameter being solved for). You cannot use the STEP= and NPOINTS=
options simultaneously. By default, the NPOINTS= option is used instead of the STEP= option.

VARY ( feature < BY parameter-list > < , . . . , feature < BY parameter-list > > )
specifies how plot features should be linked to varying analysis parameters. Available plot features are
COLOR, LINESTYLE, PANEL, and SYMBOL. A “panel” refers to a separate plot with a heading
identifying the subset of values represented in the plot.

The parameter-list is a list of one or more names separated by spaces. Each name must match the name
of an analysis option used in the analysis statement preceding the PLOT statement. Also, the name
must be the primary name for the analysis option—that is, the one listed first in the syntax description.

If you omit the < BY parameter-list > portion for a feature, then one or more multivalued parameters
from the analysis will be automatically selected for you.

X=EFFECT | N | POWER
specifies a plot with the requested type of parameter on the X axis and the parameter being solved for
on the Y axis. When X=EFFECT, the parameter assigned to the X axis is the one most representative of
“effect size.” When X=N, the parameter assigned to the X axis is the sample size. When X=POWER,
the parameter assigned to the X axis is the one most representative of “power” (either power itself or
a similar probability, such as Prob(Width) for confidence interval analyses). You cannot use the X=
and Y= options simultaneously. The default is X=POWER, unless the result parameter is power or
Prob(Width), in which case the default is X=N.

You can use the X=N option only when a scalar sample size parameter is used as input in the analysis.
For example, X=N can be used with total sample size or sample size per group, or with two group
sample sizes when one is being solved for.

Table 89.20 summarizes the parameters representing effect size in different analyses.
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Table 89.20 Effect Size Parameters for Different Analyses

Analysis Statement and Options Effect Size Parameters

COXREG Hazard ratio

LOGISTIC None

MULTREG Partial correlation or R2

difference

ONECORR Correlation

ONESAMPLEFREQ TEST Proportion

ONESAMPLEFREQ CI CI half-width

ONESAMPLEMEANS TEST=T,
ONESAMPLEMEANS TEST=EQUIV Mean

ONESAMPLEMEANS CI=T CI half-width

ONEWAYANOVA None

PAIREDFREQ Discordant proportion difference
or ratio

PAIREDMEANS TEST=DIFF,
PAIREDMEANS TEST=EQUIV_DIFF Mean difference

PAIREDMEANS TEST=RATIO,
PAIREDMEANS TEST=EQUIV_RATIO Mean ratio

PAIREDMEANS CI=DIFF CI half-width

TWOSAMPLEFREQ Proportion difference, odds ratio,
or relative risk

TWOSAMPLEMEANS TEST=DIFF,
TWOSAMPLEMEANS TEST=DIFF_SATT,
TWOSAMPLEMEANS TEST=EQUIV_DIFF Mean difference

TWOSAMPLEMEANS TEST=RATIO,
TWOSAMPLEMEANS TEST=EQUIV_RATIO Mean ratio

TWOSAMPLEMEANS CI=DIFF CI half-width

TWOSAMPLESURVIVAL Hazard ratio if used, else none

TWOSAMPLEWILCOXON None

XOPTS=( x-options )
specifies plot characteristics pertaining to the X axis.

You can specify the following x-options in parentheses.

CROSSREF=NO | YES
specifies whether the reference lines defined by the REF= x-option should be crossed with a
reference line on the Y axis that indicates the solution point on the curve.
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REF=number-list
specifies locations for reference lines extending from the X axis across the entire plotting region.
For information about specifying the number-list , see the section “Specifying Value Lists in
Analysis Statements” on page 7216.

Y=EFFECT | N | POWER
specifies a plot with the requested type of parameter on the Y axis and the parameter being solved for
on the X axis. When Y=EFFECT, the parameter assigned to the Y axis is the one most representative of
“effect size.” When Y=N, the parameter assigned to the Y axis is the sample size. When Y=POWER,
the parameter assigned to the Y axis is the one most representative of “power” (either power itself or a
similar probability, such as Prob(Width) for confidence interval analyses). You cannot use the Y= and
X= options simultaneously. By default, the X= option is used instead of the Y= option.

YOPTS=( y-options )
specifies plot characteristics pertaining to the Y axis.

You can specify the following y-options in parentheses.

CROSSREF=NO | YES
specifies whether the reference lines defined by the REF= y-option should be crossed with a
reference line on the X axis that indicates the solution point on the curve.

REF=number-list
specifies locations for reference lines extending from the Y axis across the entire plotting region.
For information about specifying the number-list , see the section “Specifying Value Lists in
Analysis Statements” on page 7216.

You can specify the following graph-options in the PLOT statement after a slash (/).

DESCRIPTION=’string ’
specifies a descriptive string of up to 40 characters that appears in the “Description” field of the
graphics catalog. The description does not appear on the plots. By default, PROC POWER assigns a
description either of the form “Y versus X” (for a single-panel plot) or of the form “Y versus X (S),”
where Y is the parameter on the Y axis, X is the parameter on the X axis, and S is a description of the
subset represented on the current panel of a multipanel plot.

NAME=’string ’
specifies a name of up to eight characters for the catalog entry for the plot. The default name is PLOTn,
where n is the number of the plot statement within the current invocation of PROC POWER. If the
name duplicates the name of an existing entry, SAS/GRAPH software adds a number to the duplicate
name to create a unique entry—for example, PLOT11 and PLOT12 for the second and third panels of
a multipanel plot generated in the first PLOT statement in an invocation of PROC POWER.

TWOSAMPLEFREQ Statement
TWOSAMPLEFREQ < options > ;

The TWOSAMPLEFREQ statement performs power and sample size analyses for tests of two independent
proportions. The Farrington-Manning score, Pearson’s chi-square, Fisher’s exact, and likelihood ratio
chi-square tests are supported.
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Summary of Options

Table 89.21 summarizes the options available in the TWOSAMPLEFREQ statement.

Table 89.21 TWOSAMPLEFREQ Statement Options

Option Description

Define analysis
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
NULLODDSRATIO= Specifies the null odds ratio
NULLPROPORTIONDIFF= Specifies the null proportion difference
NULLRELATIVERISK= Specifies the null relative risk
SIDES= Specifies the number of sides and the direction of the statistical test or

confidence interval

Specify effects
GROUPPROPORTIONS= Specifies the two independent proportions, p1 and p2
ODDSRATIO= Specifies the odds ratio Œp2=.1 � p2/� = Œp1=.1 � p1/�
PROPORTIONDIFF= Specifies the proportion difference p2 � p1
REFPROPORTION= Specifies the reference proportion p1
RELATIVERISK= Specifies the relative risk p2=p1
Specify sample size and allocation
GROUPNS= Specifies the two group sample sizes
GROUPWEIGHTS= Specifies the sample size allocation weights for the two groups
NFRACTIONAL Enables fractional input and output for sample sizes
NPERGROUP= Specifies the common sample size per group
NTOTAL= Specifies the sample size

Specify power
POWER= Specifies the desired power of the test

Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 89.22 summarizes the valid result parameters for different analyses in the TWOSAMPLEFREQ
statement.

Table 89.22 Summary of Result Parameters in the
TWOSAMPLEFREQ Statement

Analyses Solve For Syntax

TEST=FISHER Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.
TEST=FM Power POWER=.

Sample size NTOTAL=.
NPERGROUP=.
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Table 89.22 continued

Analyses Solve For Syntax

TEST=FM_RR Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.
TEST=LRCHI Power POWER=.

Sample size NTOTAL=.
NPERGROUP=.

TEST=PCHI Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.

Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test. The default is 0.05, which corresponds to the
usual 0.05 � 100% = 5% level of significance. For information about specifying the number-list , see
the section “Specifying Value Lists in Analysis Statements” on page 7216.

GROUPPROPORTIONS=grouped-number-list
GPROPORTIONS=grouped-number-list
GROUPPS=grouped-number-list
GPS=grouped-number-list

specifies the two independent proportions, p1 and p2. For information about specifying the grouped-
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 7216.

GROUPNS=grouped-number-list
GNS=grouped-number-list

specifies the two group sample sizes. For information about specifying the grouped-number-list , see
the section “Specifying Value Lists in Analysis Statements” on page 7216.

GROUPWEIGHTS=grouped-number-list
GWEIGHTS=grouped-number-list

specifies the sample size allocation weights for the two groups. This option controls how the total
sample size is divided between the two groups. Each pair of values for the two groups represents
relative allocation weights. Additionally, if the NFRACTIONAL option is not used, the total sample
size is restricted to be equal to a multiple of the sum of the two group weights (so that the resulting
design has an integer sample size for each group while adhering exactly to the group allocation
weights). Values must be integers unless the NFRACTIONAL option is used. The default value is
(1 1), a balanced design with a weight of 1 for each group. For information about specifying the
grouped-number-list , see the section “Specifying Value Lists in Analysis Statements” on page 7216.

NFRACTIONAL
NFRAC

enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 7219 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.
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NPERGROUP=number-list

NPERG=number-list
specifies the common sample size per group or requests a solution for the common sample size per
group by specifying a missing value (NPERGROUP=.). Use of this option implicitly specifies a
balanced design. For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 7216.

NTOTAL=number-list
specifies the sample size or requests a solution for the sample size by specifying a missing value
(NTOTAL=.). For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 7216.

NULLODDSRATIO=number-list

NULLOR=number-list
specifies the null odds ratio. You can specify this option only if you also specify the ODDSRATIO=
and TEST=PCHI options. The NULLODDSRATIO= option is inconsistent with TEST=PCHI, which
tests the proportion difference rather than the odds ratio, and its value is converted internally to a
NULLPROPORTIONDIFF value by fixing the reference proportion. For information about specifying
the number-list , see the section “Specifying Value Lists in Analysis Statements” on page 7216. By
default, NULLOR=1.

NULLPROPORTIONDIFF=number-list

NULLPDIFF=number-list
specifies the null proportion difference. You can specify this option only if you also specify the
GROUPPROPORTIONS= or PROPORTIONDIFF= option and the TEST=FM or TEST=PCHI option.
If you are using a nondefault null value, then TEST=FM is recommended. For information about spec-
ifying the number-list , see the section “Specifying Value Lists in Analysis Statements” on page 7216.
By default, NULLPDIFF=0.

NULLRELATIVERISK=number-list

NULLRR=number-list
specifies the null relative risk. You can specify this option only if you also specify the GROUPPRO-
PORTIONS= or RELATIVERISK= option and the TEST=FM_RR or TEST=PCHI option. If you are
using a nondefault null value, then TEST=FM_RR is recommended. The NULLRELATIVERISK=
option is inconsistent with TEST=PCHI, which tests the proportion difference rather than the relative
risk, and its value is converted internally to a NULLPROPORTIONDIFF value by fixing the reference
proportion. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 7216. By default, NULLRR=1.

ODDSRATIO=number-list

OR=number-list
specifies the odds ratio Œp2=.1 � p2/� = Œp1=.1 � p1/�. For information about specifying the number-
list , see the section “Specifying Value Lists in Analysis Statements” on page 7216.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:
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� SIDES=
� NULLPROPORTIONDIFF=
� NULLODDSRATIO=
� NULLRELATIVERISK=
� ALPHA=
� GROUPPROPORTIONS=
� REFPROPORTION=
� PROPORTIONDIFF=
� ODDSRATIO=
� RELATIVERISK=
� GROUPWEIGHTS=
� NTOTAL=
� NPERGROUP=
� GROUPNS=
� POWER=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same order
in which their corresponding options are specified in the TWOSAMPLEFREQ statement. The
OUTPUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order
in which their corresponding options are specified in the TWOSAMPLEFREQ statement.

POWER=number-list
specifies the desired power of the test or requests a solution for the power by specifying a missing
value (POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 7216.

PROPORTIONDIFF=number-list

PDIFF=number-list
specifies the proportion difference p2 � p1. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 7216.

REFPROPORTION=number-list

REFP=number-list
specifies the reference proportion p1. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 7216.

RELATIVERISK=number-list

RR=number-list
specifies the relative risk p2=p1. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 7216.

SIDES=keyword-list
specifies the number of sides (or tails) and the direction of the statistical test or confidence interval.
For information about specifying the keyword-list , see the section “Specifying Value Lists in Analysis
Statements” on page 7216. You can specify the following keywords:

1 specifies a one-sided test, with the alternative hypothesis in the same direction as the effect.

2 specifies a two-sided test.
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U specifies an upper one-sided test, with the alternative hypothesis indicating an effect greater
than the null value.

L specifies a lower one-sided test, with the alternative hypothesis indicating an effect less than the
null value.

If the effect size is zero, then SIDES=1 is not permitted; instead, specify the direction of the test
explicitly in this case with either SIDES=L or SIDES=U. By default, SIDES=2.

TEST=FISHER | FM | FM_RR | LRCHI | PCHI
specifies the statistical analysis. You can specify the following values:

FISHER specifies Fisher’s exact test.

FM specifies the score test of Farrington and Manning (1990) for proportion difference.

FM_RR specifies the score test of Farrington and Manning (1990) for relative risk.

LRCHI specifies the likelihood ratio chi-square test.

PCHI specifies Pearson’s chi-square test for proportion difference.

If you are using a nondefault null value for a noninferiority or superiority test, then TEST=FM or
TEST=FM_RR is the most appropriate choice. In the absence of any nondefault null values, the default
is TEST=PCHI. If you specify at least one nonzero null difference by using the NULLPROPOR-
TIONDIFF= option, then the default is TEST=FM. If you specify at least one null relative risk not
equal to 1 by using the NULLRR= option, then the default is TEST=FM_RR. For information about
the power and sample size computational methods and formulas, see the section “Analyses in the
TWOSAMPLEFREQ Statement” on page 7263.

Restrictions on Option Combinations

To specify the proportions, choose one of the following parameterizations:

� individual proportions (by using the GROUPPROPORTIONS= option)

� difference between proportions and reference proportion (by using the PROPORTIONDIFF= and
REFPROPORTION= options)

� odds ratio and reference proportion (by using the ODDSRATIO= and REFPROPORTION= options)

� relative risk and reference proportion (by using the RELATIVERISK= and REFPROPORTION=
options)

To specify the sample size and allocation, choose one of the following parameterizations:

� sample size per group in a balanced design (by using the NPERGROUP= option)

� total sample size and allocation weights (by using the NTOTAL= and GROUPWEIGHTS= options)

� individual group sample sizes (by using the GROUPNS= option)
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Option Groups for Common Analyses

This section summarizes the syntax for the common analyses that are supported in the TWOSAMPLEFREQ
statement.

Pearson Chi-Square Test for Two Proportions
You can use the NPERGROUP= option in a balanced design and express effects in terms of the individual
proportions, as in the following statements. Default values for the SIDES= and ALPHA= options specify a
two-sided test with a significance level of 0.05.

proc power;
twosamplefreq test=pchi

groupproportions = (.15 .25)
nullproportiondiff = .03
npergroup = 50
power = .;

run;

You can also specify an unbalanced design by using the NTOTAL= and GROUPWEIGHTS= options and
express effects in terms of the odds ratio. The default value of the NULLODDSRATIO= option specifies a
test of no effect.

proc power;
twosamplefreq test=pchi

oddsratio = 2.5
refproportion = 0.3
groupweights = (1 2)
ntotal = .
power = 0.8;

run;

You can also specify sample sizes with the GROUPNS= option and express effects in terms of relative risks.
The default value of the NULLRELATIVERISK= option specifies a test of no effect.

proc power;
twosamplefreq test=pchi

relativerisk = 1.5
refproportion = 0.2
groupns = 40 | 60
power = .;

run;

You can also express effects in terms of the proportion difference. The default value of the NULLPROPOR-
TIONDIFF= option specifies a test of no effect, and the default value of the GROUPWEIGHTS= option
specifies a balanced design.

proc power;
twosamplefreq test=pchi

proportiondiff = 0.15
refproportion = 0.4
ntotal = 100
power = .;

run;
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Farrington-Manning Score Test for Proportion Difference
The following statements demonstrate a sample size computation for the Farrington-Manning score test for
the difference of two independent proportions:

proc power;
twosamplefreq test=fm

proportiondiff = 0.06
refproportion = 0.32
nullproportiondiff = -0.02
sides = u
ntotal = .
power = 0.85;

run;

Farrington-Manning Score Test for Relative Risk
The following statements demonstrate a sample size computation for the Farrington-Manning score test for
the relative risk of two independent proportions:

proc power;
twosamplefreq test=fm_rr

relativerisk = 1.1
refproportion = 0.32
nullrelativerisk = 0.95
sides = u
ntotal = .
power = 0.9;

run;

Fisher’s Exact Conditional Test for Two Proportions
The following statements demonstrate a power computation for Fisher’s exact conditional test for two
proportions. Default values for the SIDES= and ALPHA= options specify a two-sided test with a significance
level of 0.05.

proc power;
twosamplefreq test=fisher

groupproportions = (.35 .15)
npergroup = 50
power = .;

run;

Likelihood Ratio Chi-Square Test for Two Proportions
The following statements demonstrate a sample size computation for the likelihood ratio chi-square test
for two proportions. Default values for the SIDES= and ALPHA= options specify a two-sided test with a
significance level of 0.05.

proc power;
twosamplefreq test=lrchi

oddsratio = 2
refproportion = 0.4
npergroup = .
power = 0.9;

run;
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TWOSAMPLEMEANS Statement
TWOSAMPLEMEANS < options > ;

The TWOSAMPLEMEANS statement performs power and sample size analyses for pooled and unpooled t
tests, equivalence tests, and confidence interval precision involving two independent samples.

Summary of Options

Table 89.23 summarizes the options available in the TWOSAMPLEMEANS statement.

Table 89.23 TWOSAMPLEMEANS Statement Options

Option Description

Define analysis
CI= Specifies an analysis of precision of the confidence interval
DIST= Specifies the underlying distribution assumed for the test statistic
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
LOWER= Specifies the lower equivalence bound
NULLDIFF= Specifies the null mean difference
NULLRATIO= Specifies the null mean ratio
SIDES= Specifies the number of sides and the direction of the statistical test or

confidence interval
UPPER= Specifies the upper equivalence bound

Specify effects
HALFWIDTH= Specifies the desired confidence interval half-width
GROUPMEANS= Specifies the two group means
MEANDIFF= Specifies the mean difference
MEANRATIO= Specifies the geometric mean ratio, 2=1
Specify variability
CV= Specifies the common coefficient of variation
GROUPSTDDEVS= Specifies the standard deviation of each group
STDDEV= Specifies the common standard deviation

Specify sample size and allocation
GROUPNS= Specifies the two group sample sizes
GROUPWEIGHTS= Specifies the sample size allocation weights for the two groups
NFRACTIONAL Enables fractional input and output for sample sizes
NPERGROUP= Specifies the common sample size per group
NTOTAL= Specifies the sample size

Specify power and related probabilities
POWER= Specifies the desired power of the test
PROBTYPE= Specifies the type of probability for the PROBWIDTH= option
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Table 89.23 continued

Option Description

PROBWIDTH= Specifies the desired probability of obtaining a confidence interval half-
width less than or equal to the value specified

Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 89.24 summarizes the valid result parameters for different analyses in the TWOSAMPLEMEANS
statement.

Table 89.24 Summary of Result Parameters in the
TWOSAMPLEMEANS Statement

Analyses Solve For Syntax

TEST=DIFF Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.
Group sample size GROUPNS= n1 | .

GROUPNS=. | n2
GROUPNS= (n1 .)
GROUPNS= (. n2)

Group weight GROUPWEIGHTS= w1 | .
GROUPWEIGHTS=. | w2
GROUPWEIGHTS= (w1 .)
GROUPWEIGHTS= (. w2)

Alpha ALPHA=.
Group mean GROUPMEANS= mean1 | .

GROUPMEANS=. | mean2
GROUPMEANS= (mean1 .)
GROUPMEANS= (. mean2)

Mean difference MEANDIFF=.
Standard deviation STDDEV=.

TEST=DIFF_SATT Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.

TEST=RATIO Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.

TEST=EQUIV_DIFF Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.

TEST=EQUIV_RATIO Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.
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Table 89.24 continued

Analyses Solve For Syntax

CI=DIFF Prob(width) PROBWIDTH=.
Sample size NTOTAL=.

NPERGROUP=.

Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test or requests a solution for alpha by specifying a
missing value (ALPHA=.). The default is 0.05, which corresponds to the usual 0.05 � 100% = 5%
level of significance. If the CI= and SIDES=1 options are used, then the value must be less than 0.5.
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 7216.

CI

CI=DIFF
specifies an analysis of precision of the confidence interval for the mean difference, assuming equal
variances. Instead of power, the relevant probability for this analysis is the probability that the interval
half-width is at most the value specified by the HALFWIDTH= option. If neither the TEST= option
nor the CI= option is used, the default is TEST=DIFF.

CV=number-list
specifies the coefficient of variation assumed to be common to both groups. The coefficient of variation
is defined as the ratio of the standard deviation to the mean on the original data scale. You can use this
option only with DIST=LOGNORMAL. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 7216.

DIST=LOGNORMAL | NORMAL
specifies the underlying distribution assumed for the test statistic. NORMAL corresponds
the normal distribution, and LOGNORMAL corresponds to the lognormal distribution. The
default value (also the only acceptable value in each case) is NORMAL for TEST=DIFF,
TEST=DIFF_SATT, TEST=EQUIV_DIFF, and CI=DIFF; and LOGNORMAL for TEST=RATIO and
TEST=EQUIV_RATIO.

GROUPMEANS=grouped-number-list

GMEANS=grouped-number-list
specifies the two group means or requests a solution for one group mean given the other. Means are in
the original scale. They are arithmetic if DIST=NORMAL and geometric if DIST=LOGNORMAL.
This option cannot be used with the CI=DIFF analysis. When TEST=EQUIV_DIFF, the means are
interpreted as the reference mean (first) and the treatment mean (second). For information about
specifying the grouped-number-list , see the section “Specifying Value Lists in Analysis Statements”
on page 7216.
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GROUPNS=grouped-number-list

GNS=grouped-number-list
specifies the two group sample sizes or requests a solution for one group sample size given the other.
For information about specifying the grouped-number-list , see the section “Specifying Value Lists in
Analysis Statements” on page 7216.

GROUPSTDDEVS=grouped-number-list

GSTDDEVS=grouped-number-list

GROUPSTDS=grouped-number-list

GSTDS=grouped-number-list
specifies the standard deviation of each group. Unlike the STDDEV= option, the GROUPSTD-
DEVS== option supports different values for each group. It is valid only for the Satterthwaite t test
(TEST=DIFF_SATT DIST=NORMAL). For information about specifying the grouped-number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 7216.

GROUPWEIGHTS=grouped-number-list

GWEIGHTS=grouped-number-list
specifies the sample size allocation weights for the two groups, or requests a solution for one group
weight given the other. This option controls how the total sample size is divided between the two
groups. Each pair of values for the two groups represents relative allocation weights. Additionally, if
the NFRACTIONAL option is not used, the total sample size is restricted to be equal to a multiple
of the sum of the two group weights (so that the resulting design has an integer sample size for each
group while adhering exactly to the group allocation weights). Values must be integers unless the
NFRACTIONAL option is used. The default value is (1 1), a balanced design with a weight of 1 for
each group. For information about specifying the grouped-number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 7216.

HALFWIDTH=number-list
specifies the desired confidence interval half-width. The half-width is defined as the distance between
the point estimate and a finite endpoint. This option can be used only with the CI=DIFF analysis.
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 7216.

LOWER=number-list
specifies the lower equivalence bound for the mean difference or mean ratio, in the origi-
nal scale (whether DIST=NORMAL or DIST=LOGNORMAL). Values must be greater than 0
when DIST=LOGNORMAL. This option can be used only with the TEST=EQUIV_DIFF and
TEST=EQUIV_RATIO analyses. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 7216.

MEANDIFF=number-list
specifies the mean difference, defined as �2 � �1, or requests a solution for the mean difference
by specifying a missing value (MEANDIFF=.). This option can be used only with the TEST=DIFF,
TEST=DIFF_SATT, and TEST=EQUIV_DIFF analyses. When TEST=EQUIV_DIFF, the mean differ-
ence is interpreted as the treatment mean minus the reference mean. For information about specifying
the number-list , see the section “Specifying Value Lists in Analysis Statements” on page 7216.
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MEANRATIO=number-list
specifies the geometric mean ratio, defined as 2=1. This option can be used only with the
TEST=RATIO and TEST=EQUIV_RATIO analyses. When TEST=EQUIV_RATIO, the mean ratio is
interpreted as the treatment mean divided by the reference mean. For information about specifying the
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 7216.

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 7219 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.

NPERGROUP=number-list

NPERG=number-list
specifies the common sample size per group or requests a solution for the common sample size per
group by specifying a missing value (NPERGROUP=.). Use of this option implicitly specifies a
balanced design. For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 7216.

NTOTAL=number-list
specifies the sample size or requests a solution for the sample size by specifying a missing value
(NTOTAL=.). For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 7216.

NULLDIFF=number-list

NULLD=number-list
specifies the null mean difference. The default value is 0. This option can be used only with the
TEST=DIFF and TEST=DIFF_SATT analyses. For information about specifying the number-list , see
the section “Specifying Value Lists in Analysis Statements” on page 7216.

NULLRATIO=number-list

NULLR=number-list
specifies the null mean ratio. The default value is 1. This option can be used only with the
TEST=RATIO analysis. For information about specifying the number-list , see the section “Spec-
ifying Value Lists in Analysis Statements” on page 7216.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

� SIDES=
� NULLDIFF=
� NULLRATIO=
� LOWER=
� UPPER=
� ALPHA=
� GROUPMEANS=
� MEANDIFF=



7192 F Chapter 89: The POWER Procedure

� MEANRATIO=
� HALFWIDTH=
� STDDEV=
� GROUPSTDDEVS==
� CV=
� GROUPWEIGHTS=
� NTOTAL=
� NPERGROUP=
� GROUPNS=
� POWER=
� PROBTYPE=
� PROBWIDTH=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same order
in which their corresponding options are specified in the TWOSAMPLEMEANS statement. The
OUTPUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order
in which their corresponding options are specified in the TWOSAMPLEMEANS statement.

POWER=number-list
specifies the desired power of the test or requests a solution for the power by specifying a missing
value (POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. This option cannot be used with the CI=DIFF analysis. For information about specifying
the number-list , see the section “Specifying Value Lists in Analysis Statements” on page 7216.

PROBTYPE=keyword-list
specifies the type of probability for the PROBWIDTH= option. A value of CONDITIONAL (the
default) indicates the conditional probability that the confidence interval half-width is at most the
value specified by the HALFWIDTH= option, given that the true mean difference is captured by the
confidence interval. A value of UNCONDITIONAL indicates the unconditional probability that the
confidence interval half-width is at most the value specified by the HALFWIDTH= option. you can
use the alias GIVENVALIDITY for CONDITIONAL. The PROBTYPE= option can be used only with
the CI=DIFF analysis. For information about specifying the keyword-list , see the section “Specifying
Value Lists in Analysis Statements” on page 7216.

CONDITIONAL width probability conditional on interval containing the mean

UNCONDITIONAL unconditional width probability

PROBWIDTH=number-list
specifies the desired probability of obtaining a confidence interval half-width less than or equal to the
value specified by the HALFWIDTH= option. A missing value (PROBWIDTH=.) requests a solution
for this probability. The type of probability is controlled with the PROBTYPE= option. Values are
expressed as probabilities (for example, 0.9) rather than percentages. This option can be used only with
the CI=DIFF analysis. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 7216.

SIDES=keyword-list
specifies the number of sides (or tails) and the direction of the statistical test or confidence interval.
For information about specifying the keyword-list , see the section “Specifying Value Lists in Analysis
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Statements” on page 7216. Valid keywords and their interpretation for the TEST= analyses are as
follows:

1 specifies a one-sided test, with the alternative hypothesis in the same direction as the effect.

2 specifies a two-sided test.

U specifies an upper one-sided test, with the alternative hypothesis indicating an effect greater
than the null value.

L specifies a lower one-sided test, with the alternative hypothesis indicating an effect less than the
null value.

For confidence intervals, SIDES=U refers to an interval between the lower confidence limit and infinity,
and SIDES=L refers to an interval between minus infinity and the upper confidence limit. For both
of these cases and SIDES=1, the confidence interval computations are equivalent. You cannot use
the SIDES= option with the TEST=EQUIV_DIFF and TEST=EQUIV_RATIO analyses. By default,
SIDES=2.

STDDEV=number-list

STD=number-list
specifies the standard deviation assumed to be common to both groups, or requests a solution for the
common standard deviation with a missing value (STDDEV=.). This option can be used only with
DIST=NORMAL. For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 7216.

TEST=DIFF | DIFF_SATT | EQUIV_DIFF | EQUIV_RATIO | RATIO

TEST
specifies the statistical analysis. TEST or TEST=DIFF (the default) specifies a pooled t test on the
mean difference, assuming equal variances. TEST=DIFF_SATT specifies a Satterthwaite unpooled t
test on the mean difference, assuming unequal variances. TEST=EQUIV_DIFF specifies an additive
equivalence test of the mean difference by using a two one-sided tests (TOST) analysis (Schuirmann
1987). TEST=EQUIV_RATIO specifies a multiplicative equivalence test of the mean ratio by using a
TOST analysis. TEST=RATIO specifies a pooled t test on the mean ratio, assuming equal coefficients
of variation. If neither the TEST= option nor the CI= option is used, the default is TEST=DIFF.

UPPER=number-list
specifies the upper equivalence bound for the mean difference or mean ratio, in the original scale
(whether DIST=NORMAL or DIST=LOGNORMAL). This option can be used only with the
TEST=EQUIV_DIFF and TEST=EQUIV_RATIO analyses. For information about specifying the
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 7216.

Restrictions on Option Combinations

To define the analysis, choose one of the following parameterizations:

� a statistical test (by using the TEST= option)

� confidence interval precision (by using the CI= option)

To specify the means, choose one of the following parameterizations:
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� individual group means (by using the GROUPMEANS= option)

� mean difference (by using the MEANDIFF= option)

� mean ratio (by using the MEANRATIO= option)

To specify standard deviations in the Satterthwaite t test (TEST=DIFF_SATT), choose one of the following
parameterizations:

� common standard deviation (by using the STDDEV= option)

� individual group standard deviations (by using the GROUPSTDDEVS== option)

To specify the sample sizes and allocation, choose one of the following parameterizations:

� sample size per group in a balanced design (by using the NPERGROUP= option)

� total sample size and allocation weights (by using the NTOTAL= and GROUPWEIGHTS= options)

� individual group sample sizes (by using the GROUPNS= option)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses that are supported in the TWOSAMPLEMEANS
statement.

Two-Sample t Test Assuming Equal Variances
You can use the NPERGROUP= option in a balanced design and express effects in terms of the mean
difference, as in the following statements. Default values for the DIST=, SIDES=, NULLDIFF=, and
ALPHA= options specify a two-sided test for no difference with a normal distribution and a significance
level of 0.05.

proc power;
twosamplemeans test=diff

meandiff = 7
stddev = 12
npergroup = 50
power = .;

run;

You can also specify an unbalanced design by using the NTOTAL= and GROUPWEIGHTS= options and
express effects in terms of individual group means:

proc power;
twosamplemeans test=diff

groupmeans = 8 | 15
stddev = 4
groupweights = (2 3)
ntotal = .
power = 0.9;

run;

Another way to specify the sample sizes is with the GROUPNS= option:
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proc power;
twosamplemeans test=diff

groupmeans = 8 | 15
stddev = 4
groupns = (25 40)
power = .;

run;

Two-Sample Satterthwaite t Test Assuming Unequal Variances
The following statements demonstrate a power computation for the two-sample Satterthwaite t test allowing
unequal variances. Default values for the DIST=, SIDES=, NULLDIFF=, and ALPHA= options specify a
two-sided test for no difference with a normal distribution and a significance level of 0.05.

proc power;
twosamplemeans test=diff_satt

meandiff = 3
groupstddevs = 5 | 8
groupweights = (1 2)
ntotal = 60
power = .;

run;

Two-Sample Pooled t Test of Mean Ratio with Lognormal Data
The following statements demonstrate a power computation for the pooled t test of a lognormal mean ratio.
Default values for the DIST=, SIDES=, NULLRATIO=, and ALPHA= options specify a two-sided test of
mean ratio = 1 assuming a lognormal distribution and a significance level of 0.05.

proc power;
twosamplemeans test=ratio

meanratio = 7
cv = 0.8
groupns = 50 | 70
power = .;

run;

Additive Equivalence Test for Mean Difference with Normal Data
The following statements demonstrate a sample size computation for the TOST equivalence test for a normal
mean difference. A default value of GROUPWEIGHTS=(1 1) specifies a balanced design. Default values
for the DIST= and ALPHA= options specify a significance level of 0.05 and an assumption of normally
distributed data.

proc power;
twosamplemeans test=equiv_diff

lower = 2
upper = 5
meandiff = 4
stddev = 8
ntotal = .
power = 0.9;

run;
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Multiplicative Equivalence Test for Mean Ratio with Lognormal Data
The following statements demonstrate a power computation for the TOST equivalence test for a lognormal
mean ratio. Default values for the DIST= and ALPHA= options specify a significance level of 0.05 and an
assumption of lognormally distributed data.

proc power;
twosamplemeans test=equiv_ratio

lower = 3
upper = 7
meanratio = 5
cv = 0.75
npergroup = 50
power = .;

run;

Confidence Interval for Mean Difference
By default CI=DIFF analyzes the conditional probability of obtaining the desired precision, given that the
interval contains the true mean difference, as in the following statements. The defaults of SIDES=2 and
ALPHA=0.05 specify a two-sided interval with a confidence level of 0.95.

proc power;
twosamplemeans ci = diff

halfwidth = 4
stddev = 8
groupns = (30 35)
probwidth = .;

run;

TWOSAMPLESURVIVAL Statement
TWOSAMPLESURVIVAL < options > ;

The TWOSAMPLESURVIVAL statement performs power and sample size analyses for comparing two
survival curves. The log-rank, Gehan, and Tarone-Ware rank tests are supported.

Summary of Options

Table 89.25 summarizes the options available in the TWOSAMPLESURVIVAL statement.

Table 89.25 TWOSAMPLESURVIVAL Statement Options

Option Description

Define analysis
TEST= Specifies the statistical analysis

Specify analysis information
ACCRUALTIME= Specifies the accrual time
ALPHA= Specifies the significance level
FOLLOWUPTIME= Specifies the follow-up time
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Table 89.25 continued

Option Description

SIDES= Specifies the number of sides and the direction of the statistical test or
confidence interval

TOTALTIME= Specifies the total time

Specify effects
CURVE= Defines a survival curve
GROUPMEDSURVTIMES= Specifies the median survival times in each group
GROUPSURVEXPHAZARDS= Specifies exponential hazard rates of the survival curve for each group
GROUPSURVIVAL= Specifies the survival curve for each group
HAZARDRATIO= Specifies the hazard ratio
REFSURVEXPHAZARD= Specifies the exponential hazard rate of the survival curve for the reference

group
REFSURVIVAL= Specifies the survival curve for the reference group

Specify loss information
GROUPLOSS= Specifies the exponential loss survival curve for each group
GROUPLOSSEXPHAZARDS= Specifies the exponential hazards of the loss in each group
GROUPMEDLOSSTIMES= Specifies the median times of the loss in each group

Specify sample size and allocation
ACCRUALRATEPERGROUP= Specifies the common accrual rate per group
ACCRUALRATETOTAL= Specifies the total accrual rate
EVENTSTOTAL= Specifies the expected total number of events
GROUPACCRUALRATES= Specifies the accrual rate for each group
GROUPNS= Specifies the two group sample sizes
GROUPWEIGHTS= Specifies the sample size allocation weights for the two groups
NFRACTIONAL Enables fractional input and output for sample sizes
NPERGROUP= Specifies the common sample size per group
NTOTAL= Specifies the sample size

Specify power
POWER= Specifies the desired power of the test

Specify computational method
NSUBINTERVAL= Specifies the number of subintervals per unit time

Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 89.26 summarizes the valid result parameters for different analyses in the TWOSAMPLESURVIVAL
statement.
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Table 89.26 Summary of Result Parameters in the
TWOSAMPLESURVIVAL Statement

Analyses Solve For Syntax

TEST=GEHAN Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.
EVENTSTOTAL=.
ACCRUALRATETOTAL=.
ACCRUALRATEPERGROUP=.

TEST=LOGRANK Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.
EVENTSTOTAL=.
ACCRUALRATETOTAL=.
ACCRUALRATEPERGROUP=.

TEST=TARONEWARE Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.
EVENTSTOTAL=.
ACCRUALRATETOTAL=.
ACCRUALRATEPERGROUP=.

Dictionary of Options

ACCRUALRATEPERGROUP=number-list

ACCRUALRATEPERG=number-list

ARPERGROUP=number-list

ARPERG=number-list
specifies the common accrual rate per group or requests a solution for the common accrual rate per
group by specifying a missing value (ACCRUALRATEPERGROUP=.). The accrual rate per group is
the number of subjects in each group that enters the study per time unit during the accrual period. Use
of this option implicitly specifies a balanced design. The NFRACTIONAL option is automatically
enabled when the ACCRUALRATEPERGROUP= option is used. For information about specifying
the number-list , see the section “Specifying Value Lists in Analysis Statements” on page 7216.

ACCRUALRATETOTAL=number-list

ARTOTAL=number-list
specifies the total accrual rate or requests a solution for the accrual rate by specifying a missing value
(ACCRUALRATETOTAL=.). The total accrual rate is the total number of subjects that enter the study
per time unit during the accrual period. The NFRACTIONAL option is automatically enabled when
the ACCRUALRATETOTAL= option is used. For information about specifying the number-list , see
the section “Specifying Value Lists in Analysis Statements” on page 7216.
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ACCRUALTIME=number-list | MAX

ACCTIME=number-list | MAX

ACCRUALT=number-list | MAX

ACCT=number-list | MAX
specifies the accrual time. Accrual is assumed to occur uniformly from time 0 to the time specified by
the ACCRUALTIME= option. If the GROUPSURVIVAL= or REFSURVIVAL= option is used, then
the value of the total time (the sum of accrual and follow-up times) must be less than or equal to the
largest time in each multipoint (piecewise linear) survival curve. If the ACCRUALRATEPERGROUP=,
ACCRUALRATETOTAL=, or GROUPACCRUALRATES= option is used, then the accrual time must
be greater than 0. For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 7216.

ACCRUALTIME=MAX can be used when each scenario in the analysis contains at least one piece-
wise linear survival curve (in the GROUPSURVIVAL= or REFSURVIVAL= option). It causes the
accrual time to be automatically set, separately for each scenario, to the maximum possible time
supported by the piecewise linear survival curve(s) in that scenario. It is not compatible with the
FOLLOWUPTIME=MAX option or the TOTALTIME= option.

ALPHA=number-list
specifies the level of significance of the statistical test. The default is 0.05, which corresponds to the
usual 0.05 � 100% = 5% level of significance. For information about specifying the number-list , see
the section “Specifying Value Lists in Analysis Statements” on page 7216.

CURVE("label")=points
defines a survival curve.

For the CURVE= option,

label identifies the curve in the output and with the GROUPLOSS=, GROUPSUR-
VIVAL=, and REFSURVIVAL= options.

points specifies one or more (time, survival) pairs on the curve, where the survival value
denotes the probability of surviving until at least the specified time.

A single-point curve is interpreted as exponential, and a multipoint curve is interpreted as piecewise
linear. Points can be expressed in either of two forms:

� a series of time:survival pairs separated by spaces. For example:

1:0.9 2:0.7 3:0.6

� a DOLIST of times enclosed in parentheses, followed by a colon (:), followed by a DOLIST of
survival values enclosed in parentheses. For example:

(1 to 3 by 1):(0.9 0.7 0.6)

The DOLIST format is the same as in the DATA step.

Points can also be expressed as combinations of the two forms. For example:

1:0.9 2:0.8 (3 to 6 by 1):(0.7 0.65 0.6 0.55)

The points have the following restrictions:
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� The time values must be nonnegative and strictly increasing.

� The survival values must be strictly decreasing.

� The survival value at a time of 0 must be equal to 1.

� If there is only one point, then the time must be greater than 0, and the survival value cannot be 0
or 1.

EVENTSTOTAL=number-list

EVENTTOTAL=number-list

EETOTAL=number-list
specifies the expected total number of events—that is, deaths, whether observed or censored—during
the entire study period, or requests a solution for this parameter by specifying a missing value
(EVENTSTOTAL=.). The NFRACTIONAL option is automatically enabled when the EVENTSTO-
TAL= option is used. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 7216.

FOLLOWUPTIME=number-list | MAX

FUTIME=number-list | MAX

FOLLOWUPT=number-list | MAX

FUT=number-list | MAX
specifies the follow-up time, the amount of time in the study past the accrual time. If the GROUPSUR-
VIVAL= or REFSURVIVAL= option is used, then the value of the total time (the sum of accrual and
follow-up times) must be less than or equal to the largest time in each multipoint (piecewise linear)
survival curve. For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 7216.

FOLLOWUPTIME=MAX can be used when each scenario in the analysis contains at least one
piecewise linear survival curve (in the GROUPSURVIVAL= or REFSURVIVAL= option). It causes
the follow-up time to be automatically set, separately for each scenario, to the maximum possible
time supported by the piecewise linear survival curve(s) in that scenario. It is not compatible with the
ACCRUALTIME=MAX option or the TOTALTIME= option.

GROUPACCRUALRATES=grouped-number-list

GACCRUALRATES=grouped-number-list

GROUPARS=grouped-number-list

GARS=grouped-number-list
specifies the accrual rate for each group. The groupwise accrual rates are the numbers of subjects in
each group that enters the study per time unit during the accrual period. The NFRACTIONAL option
is automatically enabled when the GROUPACCRUALRATES= option is used. For information about
specifying the grouped-number-list , see the section “Specifying Value Lists in Analysis Statements”
on page 7216.

GROUPLOSS=grouped-name-list

GLOSS=grouped-name-list
specifies the exponential loss survival curve for each group, by using labels specified with the CURVE=
option. Loss is assumed to follow an exponential curve, indicating the expected rate of censoring (in
other words, loss to follow-up) over time. For information about specifying the grouped-name-list , see
the section “Specifying Value Lists in Analysis Statements” on page 7216.
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GROUPLOSSEXPHAZARDS=grouped-number-list

GLOSSEXPHAZARDS=grouped-number-list

GROUPLOSSEXPHS=grouped-number-list

GLOSSEXPHS=grouped-number-list
specifies the exponential hazards of the loss in each group. Loss is assumed to follow an exponential
curve, indicating the expected rate of censoring (in other words, loss to follow-up) over time. If none
of the GROUPLOSSEXPHAZARDS=, GROUPLOSS=, and GROUPMEDLOSSTIMES= options
are used, the default of GROUPLOSSEXPHAZARDS=(0 0) indicates no loss to follow-up. For
information about specifying the grouped-number-list , see the section “Specifying Value Lists in
Analysis Statements” on page 7216.

GROUPMEDLOSSTIMES=grouped-number-list

GMEDLOSSTIMES=grouped-number-list

GROUPMEDLOSSTS=grouped-number-list

GMEDLOSSTS=grouped-number-list
specifies the median times of the loss in each group. Loss is assumed to follow an exponential
curve, indicating the expected rate of censoring (in other words, loss to follow-up) over time. For
information about specifying the grouped-number-list , see the section “Specifying Value Lists in
Analysis Statements” on page 7216.

GROUPMEDSURVTIMES=grouped-number-list

GMEDSURVTIMES=grouped-number-list

GROUPMEDSURVTS=grouped-number-list

GMEDSURVTS=grouped-number-list
specifies the median survival times in each group. When the GROUPMEDSURVTIMES= option is
used, the survival curve in each group is assumed to be exponential. For information about specifying
the grouped-number-list , see the section “Specifying Value Lists in Analysis Statements” on page 7216.

GROUPNS=grouped-number-list

GNS=grouped-number-list
specifies the two group sample sizes. For information about specifying the grouped-number-list , see
the section “Specifying Value Lists in Analysis Statements” on page 7216.

GROUPSURVEXPHAZARDS=grouped-number-list

GSURVEXPHAZARDS=grouped-number-list

GROUPSURVEXPHS=grouped-number-list

GEXPHS=grouped-number-list
specifies exponential hazard rates of the survival curve for each group. For information about specifying
the grouped-number-list , see the section “Specifying Value Lists in Analysis Statements” on page 7216.

GROUPSURVIVAL=grouped-name-list

GSURVIVAL=grouped-name-list

GROUPSURV=grouped-name-list

GSURV=grouped-name-list
specifies the survival curve for each group, by using labels specified with the CURVE= option. For
information about specifying the grouped-name-list , see the section “Specifying Value Lists in Analysis
Statements” on page 7216.
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GROUPWEIGHTS=grouped-number-list

GWEIGHTS=grouped-number-list
specifies the sample size allocation weights for the two groups. This option controls how the total
sample size is divided between the two groups. Each pair of values for the two groups represents
relative allocation weights. Additionally, if the NFRACTIONAL option is not used, the total sample
size is restricted to be equal to a multiple of the sum of the two group weights (so that the resulting
design has an integer sample size for each group while adhering exactly to the group allocation
weights). Values must be integers unless the NFRACTIONAL option is used. The default value is
(1 1), a balanced design with a weight of 1 for each group. For information about specifying the
grouped-number-list , see the section “Specifying Value Lists in Analysis Statements” on page 7216.

HAZARDRATIO=number-list

HR=number-list
specifies the hazard ratio of the second group’s survival curve to the first group’s survival curve. For
information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 7216.

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. This option is automatically enabled when
any of the following options are used: ACCRUALRATEPERGROUP=, ACCRUALRATETOTAL=,
EVENTSTOTAL=, and GROUPACCRUALRATES=. See the section “Sample Size Adjustment
Options” on page 7219 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.

NPERGROUP=number-list

NPERG=number-list
specifies the common sample size per group or requests a solution for the common sample size per
group by specifying a missing value (NPERGROUP=.). Use of this option implicitly specifies a
balanced design. For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 7216.

NSUBINTERVAL=number-list

NSUBINTERVALS=number-list

NSUB=number-list

NSUBS=number-list
specifies the number of subintervals per unit time to use in internal calculations. Higher values increase
computational time and memory requirements but generally lead to more accurate results. The default
value is 12. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 7216.

NTOTAL=number-list
specifies the sample size or requests a solution for the sample size by specifying a missing value
(NTOTAL=.). For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 7216.
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OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

� SIDES=
� ACCRUALTIME=
� FOLLOWUPTIME=
� TOTALTIME=
� NSUBINTERVAL=
� ALPHA=
� REFSURVIVAL=
� GROUPSURVIVAL=
� REFSURVEXPHAZARD=
� HAZARDRATIO=
� GROUPSURVEXPHAZARDS=
� GROUPMEDSURVTIMES=
� GROUPLOSSEXPHAZARDS=
� GROUPLOSS=
� GROUPMEDLOSSTIMES=
� GROUPWEIGHTS=
� NTOTAL=
� ACCRUALRATETOTAL=
� EVENTSTOTAL=
� NPERGROUP=
� ACCRUALRATEPERGROUP=
� GROUPNS=
� GROUPACCRUALRATES=
� POWER=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same order in
which their corresponding options are specified in the TWOSAMPLESURVIVAL statement. The
OUTPUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order
in which their corresponding options are specified in the TWOSAMPLESURVIVAL statement.

POWER=number-list
specifies the desired power of the test or requests a solution for the power by specifying a missing
value (POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 7216.

REFSURVEXPHAZARD=number-list

REFSURVEXPH=number-list
specifies the exponential hazard rate of the survival curve for the first (reference) group. For information
about specifying the number-list , see the section “Specifying Value Lists in Analysis Statements” on
page 7216.
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REFSURVIVAL=name-list

REFSURV=name-list
specifies the survival curve for the first (reference) group, by using labels specified with the CURVE=
option. For information about specifying the name-list , see the section “Specifying Value Lists in
Analysis Statements” on page 7216.

SIDES=keyword-list
specifies the number of sides (or tails) and the direction of the statistical test or confidence interval.
For information about specifying the keyword-list , see the section “Specifying Value Lists in Analysis
Statements” on page 7216. You can specify the following keywords:

1 specifies a one-sided test, with the alternative hypothesis in the same direction as the effect.

2 specifies a two-sided test.

U specifies an upper one-sided test, with the alternative hypothesis favoring better survival in the
second group.

L specifies a lower one-sided test, with the alternative hypothesis favoring better survival in the
first (reference) group.

By default, SIDES=2.

TEST=GEHAN | LOGRANK | TARONEWARE
specifies the statistical analysis. TEST=GEHAN specifies the Gehan rank test. TEST=LOGRANK
(the default) specifies the log-rank test. TEST=TARONEWARE specifies the Tarone-Ware rank test.

TOTALTIME=number-list | MAX

TOTALT=number-list | MAX
specifies the total time, which is equal to the sum of accrual and follow-up times. If the GROUP-
SURVIVAL= or REFSURVIVAL= option is used, then the value of the total time must be less than
or equal to the largest time in each multipoint (piecewise linear) survival curve. For information
about specifying the number-list , see the section “Specifying Value Lists in Analysis Statements” on
page 7216.

TOTALTIME=MAX can be used when each scenario in the analysis contains at least one piecewise
linear survival curve (in the GROUPSURVIVAL= or REFSURVIVAL= option). It causes the total time
to be automatically set, separately for each scenario, to the maximum possible time supported by the
piecewise linear survival curve(s) in that scenario. It is not compatible with the ACCRUALTIME=MAX
option or the FOLLOWUPTIME=MAX option.

Restrictions on Option Combinations

To specify the survival curves, choose one of the following parameterizations:

� arbitrary piecewise linear or exponential curves (by using the CURVE= and GROUPSURVIVAL=
options)

� curves with proportional hazards (by using the CURVE=, REFSURVIVAL=, and HAZARDRATIO=
options)

� exponential curves, by using one of the following parameterizations:
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– median survival times (by using the GROUPMEDSURVTIMES= option)

– the hazard ratio and the hazard of the reference curve (by using the HAZARDRATIO= and
REFSURVEXPHAZARD= options)

– the individual hazards (by using the GROUPSURVEXPHAZARDS= option)

To specify the study time, use any two of the following three options:

� accrual time (by using the ACCRUALTIME= option)

� follow-up time (by using the FOLLOWUPTIME= option)

� total time, the sum of accrual and follow-up times (by using the TOTALTIME= option)

To specify the sample size and allocation, choose one of the following parameterizations:

� sample size per group in a balanced design (by using the NPERGROUP= option)

� accrual rate per group in a balanced design (by using the ACCRUALRATEPERGROUP= option)

� total sample size and allocation weights (by using the NTOTAL= and GROUPWEIGHTS= options)

� total accrual rate and allocation weights (by using the ACCRUALRATETOTAL= and GROUP-
WEIGHTS= options)

� expected total number of events and allocation weights (by using the EVENTSTOTAL= and GROUP-
WEIGHTS= options)

� individual group sample sizes (by using the GROUPNS= option)

� individual group accrual rates (by using the GROUPACCRUALRATES= option)

The values of parameters that involve expected number of events or accrual rate are converted internally to
the analogous sample size parameterization (that is, the NPERGROUP=, NTOTAL=, or GROUPNS= option)
for the purpose of sample size adjustments according to the presence or absence of the NFRACTIONAL
option.

To specify the exponential loss curves, choose one of the following parameterizations:

� a point on the loss curve of each group (by using the CURVE= and GROUPLOSS= options)

� median loss times (by using the GROUPMEDLOSSTIMES= option)

� the individual loss hazards (by using the GROUPLOSSEXPHAZARDS= option)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses that are supported in the TWOSAMPLESUR-
VIVAL statement.
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Log-Rank Test for Two Survival Curves
You can use the NPERGROUP= option in a balanced design and specify piecewise linear or exponential
survival curves by using the CURVE= and GROUPSURVIVAL= options, as in the following statements.
Default values for the SIDES=, ALPHA=, NSUBINTERVAL=, and GROUPLOSSEXPHAZARDS= options
specify a two-sided test with a significance level of 0.05, an assumption of no loss to follow-up, and the use
of 12 subintervals per unit time in computations.

proc power;
twosamplesurvival test=logrank

curve("Control") = (1 2 3):(0.8 0.7 0.6)
curve("Treatment") = (5):(.6)
groupsurvival = "Control" | "Treatment"
accrualtime = 2
followuptime = 1
npergroup = 50
power = .;

run;

In the preceding example, the “Control” curve is piecewise linear (since it has more than one point), and the
“Treatment” curve is exponential (since it has only one point).

You can also specify an unbalanced design by using the NTOTAL= and GROUPWEIGHTS= options and
specify piecewise linear or exponential survival curves with proportional hazards by using the CURVE=,
REFSURVIVAL=, and HAZARDRATIO= options:

proc power;
twosamplesurvival test=logrank

curve("Control") = (1 2 3):(0.8 0.7 0.6)
refsurvival = "Control"
hazardratio = 1.5
accrualtime = 2
followuptime = 1
groupweights = (1 2)
ntotal = .
power = 0.8;

run;

Instead of computing sample size, you can compute the accrual rate by using the ACCRUALRATETOTAL=
option:

proc power;
twosamplesurvival test=logrank

curve("Control") = (1 2 3):(0.8 0.7 0.6)
refsurvival = "Control"
hazardratio = 1.5
accrualtime = 2
followuptime = 1
groupweights = (1 2)
accrualratetotal = .
power = 0.8;

run;

or the expected number of events by using the EVENTSTOTAL= option:
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proc power;
twosamplesurvival test=logrank

curve("Control") = (1 2 3):(0.8 0.7 0.6)
refsurvival = "Control"
hazardratio = 1.5
accrualtime = 2
followuptime = 1
groupweights = (1 2)
eventstotal = .
power = 0.8;

run;

You can also specify sample sizes with the GROUPNS= option and specify exponential survival curves in
terms of median survival times:

proc power;
twosamplesurvival test=logrank

groupmedsurvtimes = (16 22)
accrualtime = 6
totaltime = 18
groupns = 40 | 60
power = .;

run;

You can also specify exponential survival curves in terms of the hazard ratio and reference hazard. The
default value of the GROUPWEIGHTS= option specifies a balanced design.

proc power;
twosamplesurvival test=logrank

hazardratio = 1.2
refsurvexphazard = 0.7
accrualtime = 2
totaltime = 4
ntotal = 100
power = .;

run;

You can also specify exponential survival curves in terms of the individual hazards, as in the following
statements:

proc power;
twosamplesurvival test=logrank

groupsurvexphazards = 0.7 | 0.84
accrualtime = 2
totaltime = 4
ntotal = .
power = 0.9;

run;

Gehan Rank Test for Two Survival Curves
In addition to the log-rank test, you can also specify the Gehan tank test, as in the following statements.
Default values for the SIDES=, ALPHA=, NSUBINTERVAL=, and GROUPLOSSEXPHAZARDS= options
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specify a two-sided test with a significance level of 0.05, an assumption of no loss to follow-up, and the use
of 12 subintervals per unit time in computations.

proc power;
twosamplesurvival test=gehan

groupmedsurvtimes = 5 | 7
accrualtime = 3
totaltime = 6
npergroup = .
power = 0.8;

run;

Tarone-Ware Rank Test for Two Survival Curves
You can also specify the Tarone-Ware tank test, as in the following statements. Default values for the SIDES=,
ALPHA=, NSUBINTERVAL=, and GROUPLOSSEXPHAZARDS= options specify a two-sided test with a
significance level of 0.05, an assumption of no loss to follow-up, and the use of 12 subintervals per unit time
in computations.

proc power;
twosamplesurvival test=taroneware

groupmedsurvtimes = 5 | 7
accrualtime = 3
totaltime = 6
npergroup = 100
power = .;

run;

TWOSAMPLEWILCOXON Statement
TWOSAMPLEWILCOXON < options > ;

The TWOSAMPLEWILCOXON statement performs power and sample size analyses for the Wilcoxon-
Mann-Whitney test (also called the Wilcoxon rank-sum test, Mann-Whitney-Wilcoxon test, or Mann-Whitney
U test) for two independent groups.

Note that the O’Brien-Castelloe approach to computing power for the Wilcoxon test is approximate, based on
asymptotic behavior as the total sample size gets large. The quality of the power approximation degrades for
small sample sizes; conversely, the quality of the sample size approximation degrades if the two distributions
are far apart, so that only a small sample is needed to detect a significant difference. But this degradation
is rarely a problem in practical situations, in which experiments are usually performed for relatively close
distributions.

Summary of Options

Table 89.27 summarizes the options available in the TWOSAMPLEWILCOXON statement.

Table 89.27 TWOSAMPLEWILCOXON Statement Options

Option Description

Define analysis
TEST= Specifies the statistical analysis
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Table 89.27 continued

Option Description

Specify analysis information
ALPHA= Specifies the significance level
SIDES= Specifies the number of sides and the direction of the statistical test

Specify distributions
VARDIST= Defines a distribution for a variable
VARIABLES= Specifies the distributions of two or more variables

Specify sample size and allocation
GROUPNS= Specifies the two group sample sizes
GROUPWEIGHTS= Specifies the sample size allocation weights for the two groups
NFRACTIONAL Enables fractional input and output for sample sizes
NPERGROUP= Specifies the common sample size per group
NTOTAL= Specifies the sample size

Specify power
POWER= Specifies the desired power of the test

Specify computational options
NBINS= Specifies the number of categories for each variable

Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 89.28 summarizes the valid result parameters in the TWOSAMPLEWILCOXON statement.

Table 89.28 Summary of Result Parameters in the
TWOSAMPLEWILCOXON Statement

Analyses Solve For Syntax

TEST=WMW Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.

Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test. The default is 0.05, which corresponds to the
usual 0.05 � 100% = 5% level of significance. For information about specifying the number-list , see
the section “Specifying Value Lists in Analysis Statements” on page 7216.

GROUPNS=grouped-number-list

GNS=grouped-number-list
specifies the two group sample sizes. For information about specifying the grouped-number-list , see
the section “Specifying Value Lists in Analysis Statements” on page 7216.
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GROUPWEIGHTS=grouped-number-list

GWEIGHTS=grouped-number-list
specifies the sample size allocation weights for the two groups. This option controls how the total
sample size is divided between the two groups. Each pair of values for the two groups represents
relative allocation weights. Additionally, if the NFRACTIONAL option is not used, the total sample
size is restricted to be equal to a multiple of the sum of the two group weights (so that the resulting
design has an integer sample size for each group while adhering exactly to the group allocation
weights). Values must be integers unless the NFRACTIONAL option is used. The default value is
(1 1), a balanced design with a weight of 1 for each group. For information about specifying the
grouped-number-list , see the section “Specifying Value Lists in Analysis Statements” on page 7216.

NBINS=number-list
specifies the number of categories (or “bins”) each variable’s distribution is divided into (unless it is
ordinal, in which case the categories remain intact) in internal calculations. Higher values increase
computational time and memory requirements but generally lead to more accurate results. However, if
the value is too high, then numerical instability can occur. Lower values are less likely to produce “No
solution computed” errors. The default value is 1000. For information about specifying the number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 7216.

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 7219 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.

NPERGROUP=number-list

NPERG=number-list
specifies the common sample size per group or requests a solution for the common sample size per
group by specifying a missing value (NPERGROUP=.). Use of this option implicitly specifies a
balanced design. For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 7216.

NTOTAL=number-list
specifies the sample size or requests a solution for the sample size by specifying a missing value
(NTOTAL=.). For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 7216.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

� SIDES
� NBINS=
� ALPHA=
� VARIABLES=
� GROUPWEIGHTS=
� NTOTAL=
� NPERGROUP=
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� GROUPNS=
� POWER=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same order in
which their corresponding options are specified in the TWOSAMPLEWILCOXON statement. The
OUTPUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order
in which their corresponding options are specified in the TWOSAMPLEWILCOXON statement.

POWER=number-list
specifies the desired power of the test or requests a solution for the power by specifying a missing
value (POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 7216.

SIDES=keyword-list
specifies the number of sides (or tails) and the direction of the statistical test. You can specify the
following keywords:

1 specifies a one-sided test, with the alternative hypothesis in the same direction as the effect.

2 specifies a two-sided test.

U specifies an upper one-sided test, with the alternative hypothesis indicating an effect greater
than the null value.

L specifies a lower one-sided test, with the alternative hypothesis indicating an effect less than the
null value.

By default, SIDES=2.

TEST=WMW
specifies the Wilcoxon-Mann-Whitney test for two independent groups This is the default test option.

VARDIST("label")=distribution (parameters)
defines a distribution for a variable.

For the VARDIST= option,

label identifies the variable distribution in the output and with the VARIABLES= option.

distribution specifies the distributional form of the variable.

parameters specifies one or more parameters associated with the distribution.

The distributions and parameters are named and defined in the same way as the distributions and
arguments in the CDF SAS function; for more information, see SAS Language Reference: Dictionary.
Choices for distributional forms and their parameters are as follows:

ORDINAL ((values) : (probabilities)) is an ordered categorical distribution. The values are any
numbers separated by spaces. The probabilities are numbers between 0 and 1 (inclusive)
separated by spaces. Their sum must be exactly 1. The number of probabilities must match the
number of values.
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BETA (a, b <, l , r >) is a beta distribution with shape parameters a and b and optional location
parameters l and r . The values of a and b must be greater than 0, and l must be less than r . The
default values for l and r are 0 and 1, respectively.

BINOMIAL (p, n) is a binomial distribution with probability of success p and number of independent
Bernoulli trials n. The value of p must be greater than 0 and less than 1, and n must be an integer
greater than 0. If n = 1, then the distribution is binary.

EXPONENTIAL (�) is an exponential distribution with scale �, which must be greater than 0.

GAMMA (a, �) is a gamma distribution with shape a and scale �. The values of a and � must be
greater than 0.

LAPLACE (� , �) is a Laplace distribution with location � and scale �. The value of � must be
greater than 0.

LOGISTIC (� , �) is a logistic distribution with location � and scale �. The value of �must be greater
than 0.

LOGNORMAL (� , �) is a lognormal distribution with location � and scale �. The value of � must
be greater than 0.

NORMAL (� , �) is a normal distribution with mean � and standard deviation �. The value of � must
be greater than 0.

POISSON (m) is a Poisson distribution with mean m. The value of m must be greater than 0.

UNIFORM (l , r ) is a uniform distribution on the interval Œ l , r �, where l < r .

VARIABLES=grouped-name-list
VARS=grouped-name-list

specifies the distributions of two or more variables, using labels specified with the VARDIST= option.
For information about specifying the grouped-name-list , see the section “Specifying Value Lists in
Analysis Statements” on page 7216.

Restrictions on Option Combinations

To specify the sample size and allocation, choose one of the following parameterizations:

� sample size per group in a balanced design (using the NPERGROUP= option)

� total sample size and allocation weights (using the NTOTAL= and GROUPWEIGHTS= options)

� individual group sample sizes (using the GROUPNS= option)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses that are supported in the TWOSAMPLEWIL-
COXON statement.

Wilcoxon-Mann-Whitney Test for Comparing Two Distributions
The following statements performs a power analysis for Wilcoxon-Mann-Whitney tests comparing an ordinal
variable with each other type of distribution. Default values for the ALPHA=, NBINS=, SIDES=, and
TEST= options specify a two-sided test with a significance level of 0.05 and the use of 1000 categories per
distribution when discretization is needed.
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proc power;
twosamplewilcoxon

vardist("myordinal") = ordinal ((0 1 2) : (.2 .3 .5))
vardist("mybeta1") = beta (1, 2)
vardist("mybeta2") = beta (1, 2, 0, 2)
vardist("mybinomial") = binomial (.3, 3)
vardist("myexponential") = exponential (2)
vardist("mygamma") = gamma (1.5, 2)
vardist("mylaplace") = laplace (1, 2)
vardist("mylogistic") = logistic (1, 2)
vardist("mylognormal") = lognormal (1, 2)
vardist("mynormal") = normal (3, 2)
vardist("mypoisson") = poisson (2)
vardist("myuniform") = uniform (0, 2)
variables = "myordinal" | "mybeta1" "mybeta2" "mybinomial"

"myexponential" "mygamma" "mylaplace"
"mylogistic" "mylognormal" "mynormal"
"mypoisson" "myuniform"

ntotal = 40
power = .;

run;

Details: POWER Procedure

Overview of Power Concepts
In statistical hypothesis testing, you typically express the belief that some effect exists in a population by
specifying an alternative hypothesis H1. You state a null hypothesis H0 as the assertion that the effect does
not exist and attempt to gather evidence to reject H0 in favor of H1. Evidence is gathered in the form of
sample data, and a statistical test is used to assess H0. If H0 is rejected but there really is no effect, this is
called a Type I error. The probability of a Type I error is usually designated “alpha” or ˛, and statistical tests
are designed to ensure that ˛ is suitably small (for example, less than 0.05).

If there really is an effect in the population but H0 is not rejected in the statistical test, then a Type II error
has been made. The probability of a Type II error is usually designated “beta” or ˇ. The probability 1 – ˇ of
avoiding a Type II error—that is, correctly rejecting H0 and achieving statistical significance—is called the
power. (NOTE: Another more general definition of power is the probability of rejecting H0 for any given
set of circumstances, even those that correspond to H0 being true. The POWER procedure uses this more
general definition.)

An important goal in study planning is to ensure an acceptably high level of power. Sample size plays a
prominent role in power computations because the focus is often on determining a sufficient sample size to
achieve a certain power, or assessing the power for a range of different sample sizes.

Some of the analyses in the POWER procedure focus on precision rather than power. An analysis of
confidence interval precision is analogous to a traditional power analysis, with “CI Half-Width” taking
the place of effect size and “Prob(Width)” taking the place of power. The CI Half-Width is the margin of
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error associated with the confidence interval, the distance between the point estimate and an endpoint. The
Prob(Width) is the probability of obtaining a confidence interval with at most a target half-width.

Summary of Analyses
Table 89.29 gives a summary of the analyses supported in the POWER procedure. The name of the analysis
statement reflects the type of data and design. The TEST=, CI=, and DIST= options specify the focus of
the statistical hypothesis (in other words, the criterion on which the research question is based) and the test
statistic to be used in data analysis.

Table 89.29 Summary of Analyses

Analysis Statement Options

Cox proportional hazards regression: score
test

COXREG

Logistic regression: likelihood ratio
chi-square test

LOGISTIC

Multiple linear regression: Type III F test MULTREG

Correlation: Fisher’s z test ONECORR DIST=FISHERZ

Correlation: t test ONECORR DIST=T

Binomial proportion: exact test ONESAMPLEFREQ TEST=EXACT

Binomial proportion: z test ONESAMPLEFREQ TEST=Z

Binomial proportion: z test with continuity
adjustment

ONESAMPLEFREQ TEST=ADJZ

Binomial proportion: exact equivalence test ONESAMPLEFREQ TEST=EQUIV_EXACT

Binomial proportion: z equivalence test ONESAMPLEFREQ TEST=EQUIV_Z

Binomial proportion: z test with continuity
adjustment

ONESAMPLEFREQ TEST=EQUIV_ADJZ

Binomial proportion: confidence interval ONESAMPLEFREQ CI=AGRESTICOULL

CI=JEFFREYS

CI=EXACT

CI=WALD

CI=WALD_CORRECT

CI=WILSON

One-sample t test ONESAMPLEMEANS TEST=T

One-sample t test with lognormal data ONESAMPLEMEANS TEST=T
DIST=LOGNORMAL

One-sample equivalence test for mean of
normal data

ONESAMPLEMEANS TEST=EQUIV

One-sample equivalence test for mean of
lognormal data

ONESAMPLEMEANS TEST=EQUIV
DIST=LOGNORMAL
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Table 89.29 continued

Analysis Statement Options

Confidence interval for a mean ONESAMPLEMEANS CI=T

One-way ANOVA: one-degree-of-freedom
contrast

ONEWAYANOVA TEST=CONTRAST

One-way ANOVA: overall F test ONEWAYANOVA TEST=OVERALL

McNemar exact conditional test PAIREDFREQ

McNemar normal approximation test PAIREDFREQ DIST=NORMAL

Paired t test PAIREDMEANS TEST=DIFF

Paired t test of mean ratio with lognormal data PAIREDMEANS TEST=RATIO

Paired additive equivalence of mean
difference with normal data

PAIREDMEANS TEST=EQUIV_DIFF

Paired multiplicative equivalence of mean
ratio with lognormal data

PAIREDMEANS TEST=EQUIV_RATIO

Confidence interval for mean of paired
differences

PAIREDMEANS CI=DIFF

Farrington-Manning score test for proportion
difference

TWOSAMPLEFREQ TEST=FM

Farrington-Manning score test for relative risk TWOSAMPLEFREQ TEST=FM_RR

Pearson chi-square test for two independent
proportions

TWOSAMPLEFREQ TEST=PCHI

Fisher’s exact test for two independent
proportions

TWOSAMPLEFREQ TEST=FISHER

Likelihood ratio chi-square test for two
independent proportions

TWOSAMPLEFREQ TEST=LRCHI

Two-sample t test assuming equal variances TWOSAMPLEMEANS TEST=DIFF

Two-sample Satterthwaite t test assuming
unequal variances

TWOSAMPLEMEANS TEST=DIFF_SATT

Two-sample pooled t test of mean ratio with
lognormal data

TWOSAMPLEMEANS TEST=RATIO

Two-sample additive equivalence of mean
difference with normal data

TWOSAMPLEMEANS TEST=EQUIV_DIFF

Two-sample multiplicative equivalence of
mean ratio with lognormal data

TWOSAMPLEMEANS TEST=EQUIV_RATIO

Two-sample confidence interval for mean
difference

TWOSAMPLEMEANS CI=DIFF

Log-rank test for comparing two survival
curves

TWOSAMPLESURVIVAL TEST=LOGRANK

Gehan rank test for comparing two survival
curves

TWOSAMPLESURVIVAL TEST=GEHAN

Tarone-Ware rank test for comparing two
survival curves

TWOSAMPLESURVIVAL TEST=TARONEWARE

Wilcoxon-Mann-Whitney (rank-sum) test TWOSAMPLEWILCOXON
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Specifying Value Lists in Analysis Statements
To specify one or more scenarios for an analysis parameter (or set of parameters), you provide a list of values
for the statement option that corresponds to the parameter(s). To identify the parameter you want to solve for,
you place missing values in the appropriate list.

There are five basic types of such lists: keyword-lists, number-lists, grouped-number-lists, name-lists, and
grouped-name-lists. Some parameters, such as the direction of a test, have values represented by one or
more keywords in a keyword-list . Scenarios for scalar-valued parameters, such as power, are represented by a
number-list . Scenarios for groups of scalar-valued parameters, such as group sample sizes in a multigroup
design, are represented by a grouped-number-list . Scenarios for named parameters, such as reference survival
curves, are represented by a name-list . Scenarios for groups of named parameters, such as group survival
curves, are represented by a grouped-name-list .

The following subsections explain these five basic types of lists.

Keyword-Lists

A keyword-list is a list of one or more keywords, separated by spaces. For example, you can specify both
two-sided and upper-tailed versions of a one-sample t test as follows:

SIDES = 2 U

Number-Lists

A number-list can be one of two things: a series of one or more numbers expressed in the form of one or
more DOLISTs, or a missing value indicator (.).

The DOLIST format is the same as in the DATA step language. For example, for the one-sample t test you
can specify four scenarios (30, 50, 70, and 100) for a total sample size in any of the following ways.

NTOTAL = 30 50 70 100
NTOTAL = 30 to 70 by 20 100

A missing value identifies a parameter as the result parameter; it is valid only with options representing
parameters you can solve for in a given analysis. For example, you can request a solution for NTOTAL as
follows:

NTOTAL = .

Grouped-Number-Lists

A grouped-number-list specifies multiple scenarios for numeric values in two or more groups, possibly
including missing value indicators to solve for a specific group. The list can assume one of two general forms,
a “crossed” version and a “matched” version.
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Crossed Grouped-Number-Lists
The crossed version of a grouped number list consists of a series of number-lists (see the section “Number-
Lists” on page 7216), one representing each group, with groups separated by a vertical bar (|). The values
for each group represent multiple scenarios for that group, and the scenarios for each individual group are
crossed to produce the set of all scenarios for the analysis option. For example, you can specify the following
six scenarios for the sizes .n1; n2/ of two groups

.20; 30/.20; 40/.20; 50/

.25; 30/.25; 40/.25; 50/

as follows:

GROUPNS = 20 25 | 30 40 50

If the analysis can solve for a value in one group given the other groups, then one of the number-lists in a
crossed grouped-number-list can be a missing value indicator (.). For example, in a two-sample t test you
can posit three scenarios for the group 2 sample size while solving for the group 1 sample size:

GROUPNS = . | 30 40 50

Some analyses can involve more than two groups. For example, you can specify 2 � 3 � 1 = 6 scenarios for
the means of three groups in a one-way ANOVA as follows:

GROUPMEANS = 10 12 | 10 to 20 by 5 | 24

Matched Grouped-Number-Lists
The matched version of a grouped number list consists of a series of numeric lists, each enclosed in
parentheses. Each list consists of a value for each group and represents a single scenario for the analysis
option. Multiple scenarios for the analysis option are represented by multiple lists. For example, you can
express the crossed grouped-number-list

GROUPNS = 20 25 | 30 40 50

alternatively in a matched format:

GROUPNS = (20 30) (20 40) (20 50) (25 30) (25 40) (25 50)

The matched version is particularly useful when you want to include only a subset of all combinations of
individual group values. For example, you might want to pair 20 only with 50, and 25 only with 30 and 40:

GROUPNS = (20 50) (25 30) (25 40)

If the analysis can solve for a value in one group given the other groups, then you can replace the value for
that group with a missing value indicator (.). If used, the missing value indicator must occur in the same
group in every scenario. For example, you can solve for the group 1 sample size (as in the section “Crossed
Grouped-Number-Lists” on page 7217) by using a matched format:



7218 F Chapter 89: The POWER Procedure

GROUPNS = (. 30) (. 40) (. 50)

Some analyses can involve more than two groups. For example, you can specify two scenarios for the means
of three groups in a one-way ANOVA:

GROUPMEANS = (15 24 32) (12 25 36)

Name-Lists

A name-list is a list of one or more names that are enclosed in single or double quotation marks and separated
by spaces. For example, you can specify two scenarios for the reference survival curve in a log-rank test as
follows:

REFSURVIVAL = "Curve A" "Curve B"

Grouped-Name-Lists

A grouped-name-list specifies multiple scenarios for names in two or more groups. The list can assume one
of two general forms, a “crossed” version and a “matched” version.

Crossed Grouped-Name-Lists
The crossed version of a grouped name list consists of a series of name-lists (see the section “Name-Lists”
on page 7218), one representing each group, with groups separated by a vertical bar (|). The values for each
group represent multiple scenarios for that group, and the scenarios for each individual group are crossed
to produce the set of all scenarios for the analysis option. For example, you can specify the following six
scenarios for the survival curves .c1; c2/ of two groups

."Curve A"; "Curve C"/."Curve A"; "Curve D"/."Curve A"; "Curve E"/

."Curve B"; "Curve C"/."Curve B"; "Curve D"/."Curve B"; "Curve E"/

as follows:

GROUPSURVIVAL = "Curve A" "Curve B" | "Curve C" "Curve D"
"Curve E"

Matched Grouped-Name-Lists
The matched version of a grouped name list consists of a series of name lists, each enclosed in parentheses.
Each list consists of a name for each group and represents a single scenario for the analysis option. Multiple
scenarios for the analysis option are represented by multiple lists. For example, you can express the crossed
grouped-name-list

GROUPSURVIVAL = "Curve A" "Curve B" | "Curve C" "Curve D"
"Curve E"

alternatively in a matched format:
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GROUPSURVIVAL = ("Curve A" "Curve C")
("Curve A" "Curve D")
("Curve A" "Curve E")
("Curve B" "Curve C")
("Curve B" "Curve D")
("Curve B" "Curve E")

The matched version is particularly useful when you want to include only a subset of all combinations of
individual group values. For example, you might want to pair “Curve A” only with “Curve C”, and “Curve B”
only with “Curve D” and “Curve E”:

GROUPSURVIVAL = ("Curve A" "Curve C")
("Curve B" "Curve D")
("Curve B" "Curve E")

Sample Size Adjustment Options
By default, PROC POWER rounds sample sizes conservatively (down in the input, up in the output) so that
all total sizes (and individual group sample sizes, if a multigroup design) are integers. This is generally
considered conservative because it selects the closest realistic design providing at most the power of the
(possibly fractional) input or mathematically optimized design. In addition, in a multigroup design, all group
sizes are adjusted to be multiples of the corresponding group weights. For example, if GROUPWEIGHTS =
(2 6), then all group 1 sample sizes become multiples of 2, and all group 2 sample sizes become multiples of
6 (and all total sample sizes become multiples of 8).

With the NFRACTIONAL option, sample size input is not rounded, and sample size output (whether total or
groupwise) are reported in two versions, a raw “fractional” version and a “ceiling” version rounded up to the
nearest integer.

Whenever an input sample size is adjusted, both the original (“nominal”) and adjusted (“actual”) sample
sizes are reported. Whenever computed output sample sizes are adjusted, both the original input (“nominal”)
power and the achieved (“actual”) power at the adjusted sample size are reported.

Error and Information Output
The Error column in the main output table provides reasons for missing results and flags numerical results
that are bounds rather than exact answers. For example, consider the sample size analysis implemented by
the following statements:

proc power;
twosamplefreq test=fm_rr

relativerisk=1.0001
refproportion=.4
nullrelativerisk=1
power=.9
ntotal=.;

run;
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Figure 89.6 Error Column

The POWER Procedure
Farrington-Manning Score Test for Relative Risk

The POWER Procedure
Farrington-Manning Score Test for Relative Risk

Fixed Scenario Elements

Distribution Asymptotic normal

Method Normal approximation

Null Relative Risk 1

Reference (Group 1) Proportion 0.4

Relative Risk 1.0001

Nominal Power 0.9

Number of Sides 2

Alpha 0.05

Group 1 Weight 1

Group 2 Weight 1

Computed N Total

Actual
Power N Total Error

0.473 2.15E+09 Solution is a lower bound

The output in Figure 89.6 reveals that the sample size to achieve a power of 0.9 could not be computed, but
that the sample size 2.15E+09 achieves a power of 0.473.

The Info column provides further details about Error column entries, warnings about any boundary conditions
detected, and notes about any adjustments to input. Note that the Info column is hidden by default in the
main output. You can view it by using the ODS OUTPUT statement to save the output as a data set and the
PRINT procedure. For example, the following SAS statements print both the Error and Info columns for a
power computation in a two-sample t test:

proc power;
twosamplemeans

meandiff= 0 7
stddev=2
ntotal=2 5
power=.;

ods output output=Power;
run;

proc print noobs data=Power;
var MeanDiff NominalNTotal NTotal Power Error Info;

run;

The output is shown in Figure 89.7.

Figure 89.7 Error and Info Columns

MeanDiff NominalNTotal NTotal Power Error Info

0 2 2 . Invalid input N too small / No effect

0 5 4 0.050 Input N adjusted / No effect

7 2 2 . Invalid input N too small

7 5 4 0.477 Input N adjusted
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The mean difference of 0 specified with the MEANDIFF= option leads to a “No effect” message to appear
in the Info column. The sample size of 2 specified with the NTOTAL= option leads to an “Invalid input”
message in the Error column and an “NTotal too small” message in the Info column. The sample size of 5
leads to an “Input N adjusted” message in the Info column because it is rounded down to 4 to produce integer
group sizes of 2 per group.

Displayed Output
If you use the PLOTONLY option in the PROC POWER statement, the procedure displays only graphical
output. Otherwise, the displayed output of the POWER procedure includes the following:

� the “Fixed Scenario Elements” table, which shows all applicable single-valued analysis parameters, in
the following order: distribution, method, parameters that are input explicitly, and parameters that are
supplied with defaults

� an output table that shows the following when applicable (in order): the index of the scenario, all
multivalued input, ancillary results, the primary computed result, and error descriptions

� plots (if requested)

For each input parameter, the order of the input values is preserved in the output.

Ancillary results include the following:

� Actual Power, the achieved power, if it differs from the input (Nominal) power value

� Actual Prob(Width), the achieved precision probability, if it differs from the input (Nominal) probability
value

� Actual Alpha, the achieved significance level, if it differs from the input (Nominal) alpha value

� fractional sample size, if the NFRACTIONAL option is used in the analysis statement

If sample size is the result parameter and the NFRACTIONAL option is used in the analysis statement, then
both “Fractional” and “Ceiling” sample size results are displayed. Fractional sample sizes correspond to the
“Nominal” values of power or precision probability. Ceiling sample sizes are simply the fractional sample
sizes rounded up to the nearest integer; they correspond to “Actual” values of power or precision probability.

ODS Table Names
PROC POWER assigns a name to each table that it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 89.30. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”
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Table 89.30 ODS Tables Produced by PROC POWER

ODS Table Name Description Statement

FixedElements Factoid with single-valued analysis parameters Default*
Output All input and computed analysis parameters, error messages, and

information messages for each scenario
Default

PlotContent Data contained in plots, including analysis parameters and indices
identifying plot features. (NOTE: This table is saved as a data set
and not displayed in PROC POWER output.)

PLOT

*Depends on input.

Computational Resources

Memory

In the TWOSAMPLESURVIVAL statement, the amount of required memory is roughly proportional to the
product of the number of subintervals (specified by the NSUBINTERVAL= option) and the total time of the
study (specified by the ACCRUALTIME=, FOLLOWUPTIME=, and TOTALTIME= options). If you run out
of memory, then you can try either specifying a smaller number of subintervals, changing the time scale to a
use a longer time unit (for example, years instead of months), or both.

CPU Time

In the Satterthwaite t test analysis (TWOSAMPLEMEANS TEST=DIFF_SATT), the required CPU time
grows as the mean difference decreases relative to the standard deviations. In the PAIREDFREQ statement,
the required CPU time for the exact power computation (METHOD=EXACT) grows with the sample size.

Computational Methods and Formulas
This section describes the approaches that PROC POWER uses to compute power for each analysis. The first
subsection defines some common notation. The following subsections describe the various power analyses,
including discussions of the data, statistical test, and power formula for each analysis. Unless otherwise
indicated, computed values for parameters besides power (for example, sample size) are obtained by solving
power formulas for the desired parameters.
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Common Notation

Table 89.31 displays notation for some of the more common parameters across analyses. The Associated
Syntax column shows examples of relevant analysis statement options, where applicable.

Table 89.31 Common Notation

Symbol Description Associated Syntax

˛ Significance level ALPHA=
N Total sample size NTOTAL=, NPAIRS=
ni Sample size in ith group NPERGROUP=,

GROUPNS=
wi Allocation weight for ith group (standardized to sum

to 1)
GROUPWEIGHTS=

� (Arithmetic) mean MEAN=
�i (Arithmetic) mean in ith group GROUPMEANS=,

PAIREDMEANS=
�diff (Arithmetic) mean difference, �2 � �1 or �T � �R MEANDIFF=
�0 Null mean or mean difference (arithmetic) NULL=, NULLDIFF=
 Geometric mean MEAN=
i Geometric mean in ith group GROUPMEANS=,

PAIREDMEANS=
0 Null mean or mean ratio (geometric) NULL=, NULLRATIO=
� Standard deviation (or common standard deviation per

group)
STDDEV=

�i Standard deviation in ith group GROUPSTDDEVS=,
PAIREDSTDDEVS=

�diff Standard deviation of differences
CV Coefficient of variation, defined as the ratio of the

standard deviation to the (arithmetic) mean on the
original data scale

CV=, PAIREDCVS=

� Correlation CORR=
�T ; �R Treatment and reference (arithmetic) means for

equivalence test
GROUPMEANS=,
PAIREDMEANS=

T ; R Treatment and reference geometric means for
equivalence test

GROUPMEANS=,
PAIREDMEANS=

�L Lower equivalence bound LOWER=
�U Upper equivalence bound UPPER=
t .�; ı/ t distribution with df � and noncentrality ı
F.�1; �2; �/ F distribution with numerator df �1, denominator df

�2, and noncentrality �
tpI� pth percentile of t distribution with df �
FpI�1;�2 pth percentile of F distribution with numerator df �1

and denominator df �2
Bin.N; p/ Binomial distribution with sample size N and

proportion p
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A “lower one-sided” test is associated with SIDES=L (or SIDES=1 with the effect smaller than the null
value), and an “upper one-sided” test is associated with SIDES=U (or SIDES=1 with the effect larger than
the null value).

Owen (1965) defines a function, known as Owen’s Q, that is convenient for representing terms in power
formulas for confidence intervals and equivalence tests:

Q�.t; ıI a; b/ D

p
2�

�.�
2
/2
��2
2

Z b

a

ˆ

�
tx
p
�
� ı

�
x��1�.x/dx

where �.�/ and ˆ.�/ are the density and cumulative distribution function of the standard normal distribution,
respectively.

Analyses in the COXREG Statement

Score Test of a Single Scalar Predictor in Cox Proportional Hazards Regression (TEST=SCORE)
The power-computing formula is based on Hsieh and Lavori (2000, equation (2) and the section “Variance
Inflation Factor” on page 556).

Define the following notation for a Cox proportional hazards regression analysis:

N D #subjects .NTOTAL/

K D #predictors

x D .x1; : : : ; xK/0 D vector of predictors

x1 D predictor of interest

x�1 D .x2; : : : ; xK/0

h.t jx/ D hazard function for survival time given x, evaluated at time t

h0.t/ D baseline hazard at time t

hr D hazard ratio for one-unit increase in x1 (HAZARDRATIO)

pe D Prob.event is uncensored/ .EVENTPROB/

� D standard deviation of x1 (STDDEV)

� D Corr.x�1; x1/

R2 D �2 D R2 value from regression of x1 on x�1 .RSQUARE/



Computational Methods and Formulas F 7225

The Cox proportional hazards regression model is

log .h.t jx=h0.t// D ˇx
D ˇ1x1 C � � � C ˇKxK

You can convert a regression coefficient to a hazard ratio by using the equation hr D exp.ˇ1/.

The hypothesis test of the first predictor variable is

H0Whr D 1

H1W

8<:
hr ¤ 1; two-sided
hr < 1; upper one-sided
hr > 1; lower one-sided

The upper and lower one-sided cases are expressed differently than in other analyses. This is because hr > 1
corresponds to a negative correlation between the tested predictor and survival and thus, by the convention
used in PROC POWER for regression analyses, the lower side.

The approximate power is

power D

8̂̂̂<̂
ˆ̂:
ˆ
�
z˛ � �

p
Npe.1 �R2/ log.hr/

�
; upper one-sided

1 �ˆ
�
z1�˛ � �

p
Npe.1 �R2/ log.hr/

�
; lower one-sided

ˆ
�
z˛
2
� �

p
Npe.1 �R2/ log.hr/

�
C 1 �ˆ

�
z1�˛

2
� �

p
Npe.1 �R2/ log.hr/

�
; two-sided

For the one-sided cases, a closed-form inversion of the power equation yields an approximate total sample
size

N D

 �
zpower C z1�˛

�2
pe.1 �R2/�2 log.hr/

!

For the two-sided case, the solution for N is obtained by numerically inverting the power equation.

Analyses in the LOGISTIC Statement

Likelihood Ratio Chi-Square Test for One Predictor (TEST=LRCHI)
The power-computing formula is based on Shieh and O’Brien (1998); Shieh (2000); Self, Mauritsen, and
Ohara (1992), and Hsieh (1989).
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Define the following notation for a logistic regression analysis:

N D #subjects .NTOTAL/

K D #predictors (not counting intercept)

x D .x1; : : : ; xK/0 D random variables for predictor vector

x�1 D .x2; : : : ; xK/0

� D .�1; : : : ; �K/
0
D Ex D mean predictor vector

xi D .xi1; : : : ; xiK/0 D predictor vector for subject i .i 2 1; : : : ; N /

Y D random variable for response (0 or 1)

Yi D response for subject i .i 2 1; : : : ; N /

pi D Prob.Yi D 1jxi / .i 2 1; : : : ; N /

� D Prob.Yi D 1jxi D �/ .RESPONSEPROB/

Uj D unit change for j th predictor .UNITS/

ORj D Odds.Yi D 1jxij D c/=Odds.Yi D 1jxij D c � Uj / .c arbitrary; i 2 1; : : : ; N;

j 2 1; : : : ; K/ (TESTODDSRATIO if j D 1;COVODDSRATIOS if j > 1/

‰0 D intercept in full model (INTERCEPT)

‰ D .‰1; : : : ; ‰K/
0
D regression coefficients in full model

.‰1 D TESTREGCOEFF, others = COVREGCOEFFS/

� D Corr.x�1; x1/ .CORR/

cj D #distinct possible values of xij .j 2 1; : : : ; K/.for any i/ .NBINS/

x?gj D gth possible value of xij .g 2 1; : : : ; cj /.j 2 1; : : : ; K/

.for any i/ .VARDIST/

�gj D Prob
�
xij D x

?
gj

�
.g 2 1; : : : ; cj /.j 2 1; : : : ; K/

.for any i/ .VARDIST/

C D

KY
jD1

cj D #possible values of xi .for any i/

x?m D mth possible value of xi .m 2 1; : : : ; C /

�m D Prob
�
xi D x?m

�
.m 2 1; : : : ; C /

The logistic regression model is

log
�

pi

1 � pi

�
D ‰0 C‰

0xi

The hypothesis test of the first predictor variable is

H0W‰1 D 0

H1W‰1 ¤ 0
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Assuming independence among all predictor variables, �m is defined as follows:

�m D

KY
jD1

�h.m;j /j .m 2 1; : : : ; C /

where h.m; j / is calculated according to the following algorithm:

z D mI

do j D K to 1I

h.m; j / D mod.z � 1; cj /C 1I
z D floor..z � 1/=cj /C 1I

endI

This algorithm causes the elements of the transposed vector fh.m; 1/; : : : ; h.m;K/g to vary fastest to slowest
from right to left as m increases, as shown in the following table of h.m; j / values:

j

h.m; j / 1 2 � � � K � 1 K

1 1 1 � � � 1 1

1 1 1 � � � 1 2
:::

:::
::: 1 1 � � � 1 cK
::: 1 1 � � � 2 1
::: 1 1 � � � 2 2
:::

:::

m
::: 1 1 � � � 2 cK
:::

:::
::: c1 c2 � � � cK�1 1
::: c1 c2 � � � cK�1 2
:::

:::

C c1 c2 � � � cK�1 cK

The x?m values are determined in a completely analogous manner.

The discretization is handled as follows (unless the distribution is ordinal, or binomial with sample size
parameter at least as large as requested number of bins): for xj , generate cj quantiles at evenly spaced
probability values such that each such quantile is at the midpoint of a bin with probability 1

cj
. In other words,

x?gj D

�
g � 0:5

cj

�
th quantile of relevant distribution

.g 2 1; : : : ; cj /.j 2 1; : : : ; K/

�gj D
1

cj
(same for all g)
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The primary noncentrality for the power computation is

�? D 2

CX
mD1

�m
�
b0.�m/

�
�m � �

?
m

�
�
�
b.�m/ � b.�

?
m/
��

where

b0.�/ D
exp.�/

1C exp.�/
b.�/ D log .1C exp.�//
�m D ‰0 C‰

0x?m
�?m D ‰

?
0 C‰

?0x?m

where

‰?0 D ‰0 C‰1�1 D intercept in reduced model, absorbing the tested predictor

‰? D .0;‰2; : : : ; ‰K/
0
D coefficients in reduced model

The power is

power D P
�
�2.1;�?N.1 � �2// � �21�˛.1/

�
The factor .1 � �2/ is the adjustment for correlation between the predictor that is being tested and other
predictors, from Hsieh (1989).

Alternative input parameterizations are handled by the following transformations:

‰0 D log
�

�

1 � �

�
�‰ 0�

‰j D
log.ORj /

Uj
.j 2 1; : : : ; K/

Analyses in the MULTREG Statement

Type III F Test in Multiple Regression (TEST=TYPE3)
Maxwell (2000) discusses a number of different ways to represent effect sizes (and to compute exact power
based on them) in multiple regression. PROC POWER supports two of these, multiple partial correlation and
R2 in full and reduced models.

Let p denote the total number of predictors in the full model (excluding the intercept), and let Y denote the
response variable. You are testing that the coefficients of p1 � 1 predictors in a set X1 are 0, controlling for
all of the other predictors X�1, which consists of p � p1 � 0 variables.

The hypotheses can be expressed in two different ways. The first is in terms of �YX1jX�1 , the multiple partial
correlation between the predictors in X1 and the response Y adjusting for the predictors in X�1:

H0W�
2
YX1jX�1

D 0

H1W�
2
YX1jX�1

> 0
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The second is in terms of the multiple correlations in full (�Y j.X1;X�1/) and reduced (�Y jX�1) nested models:

H0W�
2
Y j.X1;X�1/

� �2Y jX�1 D 0

H1W�
2
Y j.X1;X�1/

� �2Y jX�1 > 0

Note that the squared values of �Y j.X1;X�1/ and �Y jX�1 are the population R2 values for full and reduced
models.

The test statistic can be written in terms of the sample multiple partial correlation RYX1jX�1 ,

F D

8̂̂<̂
:̂
.N � 1 � p/

R2
YX1jX�1

1�R2
YX1jX�1

; intercept

.N � p/
R2
YX1jX�1

1�R2
YX1jX�1

; no intercept

or the sample multiple correlations in full (RY j.X1;X�1/) and reduced (RY jX�1) models,

F D

8̂̂<̂
:̂
.N � 1 � p/

R2
Y j.X1;X�1/

�R2
Y jX�1

1�R2
Y j.X1;X�1/

; intercept

.N � p/
R2
Y j.X1;X�1/

�R2
Y jX�1

1�R2
Y j.X1;X�1/

; no intercept

The test is the usual Type III F test in multiple regression:

Reject H0 if
�
F � F1�˛.p1; N � 1 � p/; intercept
F � F1�˛.p1; N � p/; no intercept

Although the test is invariant to whether the predictors are assumed to be random or fixed, the power is
affected by this assumption. If the response and predictors are assumed to have a joint multivariate normal
distribution, then the exact power is given by the following formula:

power D

8̂̂<̂
:̂
P

��
N�1�p
p1

�� R2
YX1jX�1

1�R2
YX1jX�1

�
� F1�˛.p1; N � 1 � p/

�
; intercept

P

��
N�p
p1

�� R2
YX1jX�1

1�R2
YX1jX�1

�
� F1�˛.p1; N � p/

�
; no intercept

D

8̂̂<̂
:̂
P

�
R2
YX1jX�1

�
F1�˛.p1;N�1�p/

F1�˛.p1;N�1�p/C
N�1�p
p1

�
; intercept

P

�
R2
YX1jX�1

�
F1�˛.p1;N�p/

F1�˛.p1;N�p/C
N�p
p1

�
; no intercept

The distribution of R2
YX1jX�1

(for any �2
YX1jX�1

) is given in Chapter 32 of Johnson, Kotz, and Balakrishnan
(1995). Sample size tables are presented in Gatsonis and Sampson (1989).

If the predictors are assumed to have fixed values, then the exact power is given by the noncentral F
distribution. The noncentrality parameter is

� D N
�2
YX1jX�1

1 � �2
YX1jX�1
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or equivalently,

� D N
�2
Y j.X1;X�1/

� �2
Y jX�1

1 � �2
Y j.X1;X�1/

The power is

power D
�
P .F.p1; N � 1 � p; �/ � F1�˛.p1; N � 1 � p// ; intercept
P .F.p1; N � p; �/ � F1�˛.p1; N � p// ; no intercept

The minimum acceptable input value of N depends on several factors, as shown in Table 89.32.

Table 89.32 Minimum Acceptable Sample Size Values in the MULTREG Statement

Predictor Type Intercept in Model? p1 D 1? Minimum N

Random Yes Yes p + 3
Random Yes No p + 2
Random No Yes p + 2
Random No No p + 1
Fixed Yes Yes or No p + 2
Fixed No Yes or No p + 1

Analyses in the ONECORR Statement

Fisher’s z Test for Pearson Correlation (TEST=PEARSON DIST=FISHERZ)
Fisher’s z transformation (Fisher 1921) of the sample correlation RY j.X1;X�1/ is defined as

z D
1

2
log

�
1CRY j.X1;X�1/

1 �RY j.X1;X�1/

�
Fisher’s z test assumes the approximate normal distribution N.�; �2/ for z, where

� D
1

2
log

�
1C �Y j.X1;X�1/

1 � �Y j.X1;X�1/

�
C

�Y j.X1;X�1/

2.N � 1 � p?/

and

�2 D
1

N � 3 � p?

where p? is the number of variables partialed out (Anderson 1984, pp. 132–133) and �Y j.X1;X�1/ is the
partial correlation between Y and X1 adjusting for the set of zero or more variables X�1.

The test statistic

z? D .N � 3 � p?/
1
2

�
z �

1

2
log

�
1C �0

1 � �0

�
�

�0

2.N � 1 � p?/

�
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is assumed to have a normal distribution N.ı; �/, where �0 is the null partial correlation and ı and � are
derived from Section 16.33 of Stuart and Ord (1994):

ı D .N � 3 � p?/
1
2

"
1

2
log

�
1C �Y j.X1;X�1/

1 � �Y j.X1;X�1/

�
C

�Y j.X1;X�1/

2.N � 1 � p?/

 
1C

5C �2
Y j.X1;X�1/

4.N � 1 � p?/
C

11C 2�2
Y j.X1;X�1/

C 3�4
Y j.X1;X�1/

8.N � 1 � p?/2

!
�
1

2
log

�
1C �0

1 � �0

�
�

�0

2.N � 1 � p?/

#

� D
N � 3 � p?

N � 1 � p?

"
1C

4 � �2
Y j.X1;X�1/

2.N � 1 � p?/
C

22 � 6�2
Y j.X1;X�1/

� 3�4
Y j.X1;X�1/

6.N � 1 � p?/2

#

The approximate power is computed as

power D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

ˆ

�
ı�z1�˛

�
1
2

�
; upper one-sided

ˆ

�
�ı�z1�˛

�
1
2

�
; lower one-sided

ˆ

�
ı�z1�˛

2

�
1
2

�
Cˆ

�
�ı�z1�˛

2

�
1
2

�
; two-sided

Because the test is biased, the achieved significance level might differ from the nominal significance level.
The actual alpha is computed in the same way as the power, except that the correlation �Y j.X1;X�1/ is replaced
by the null correlation �0.

t Test for Pearson Correlation (TEST=PEARSON DIST=T)
The two-sided case is identical to multiple regression with an intercept and p1 D 1, which is discussed in the
section “Analyses in the MULTREG Statement” on page 7228.

Let p? denote the number of variables partialed out. For the one-sided cases, the test statistic is

t D .N � 2 � p?/
1
2

RYX1jX�1�
1 �R2

YX1jX�1

� 1
2

which is assumed to have a null distribution of t .N � 2 � p?/.

If the X and Y variables are assumed to have a joint multivariate normal distribution, then the exact power is
given by the following formula:
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power D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:
P

24.N � 2 � p?/ 12 RYX1jX�1�
1�R2

YX1jX�1

� 1
2

� t1�˛.N � 2 � p
?/

35 ; upper one-sided

P

24.N � 2 � p?/ 12 RYX1jX�1�
1�R2

YX1jX�1

� 1
2

� t˛.N � 2 � p
?/

35 ; lower one-sided

D

8̂̂̂̂
<̂
ˆ̂̂:
P

"
RY j.X1;X�1/ �

t1�˛.N�2�p
?/

.t21�˛.N�2�p?/CN�2�p?/
1
2

#
; upper one-sided

P

"
RY j.X1;X�1/ �

t˛.N�2�p
?/

.t2˛.N�2�p?/CN�2�p?/
1
2

#
; lower one-sided

The distribution of RY j.X1;X�1/ (given the underlying true correlation �Y j.X1;X�1/) is given in Chapter 32 of
Johnson, Kotz, and Balakrishnan (1995).

If the X variables are assumed to have fixed values, then the exact power is given by the noncentral t
distribution t .N � 2 � p?; ı/, where the noncentrality is

ı D N
1
2

�YX1jX�1�
1 � �2

YX1jX�1

� 1
2

The power is

power D
�
P .t.N � 2 � p?; ı/ � t1�˛.N � 2 � p

?// ; upper one-sided
P .t.N � 2 � p?; ı/ � t˛.N � 2 � p

?// ; lower one-sided

Analyses in the ONESAMPLEFREQ Statement

Exact Test of a Binomial Proportion (TEST=EXACT)
Let X be distributed as Bin.N; p/. The hypotheses for the test of the proportion p are as follows:

H0Wp D p0

H1W

8<:
p ¤ p0; two-sided
p > p0; upper one-sided
p < p0; lower one-sided

The exact test assumes binomially distributed data and requires N � 1 and 0 < p0 < 1. The test statistic is

X D number of successes Ï Bin.N; p/

The significance probability ˛ is split symmetrically for two-sided tests, in the sense that each tail is filled
with as much as possible up to ˛=2.
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Exact power computations are based on the binomial distribution and computing formulas such as the
following from Johnson, Kotz, and Kemp (1992, equation 3.20):

P.X � C jN;p/ D P

�
F�1;�2 �

�2p

�1.1 � p/

�
where �1 D 2C and �2 D 2.N � C C 1/

Let CL and CU denote lower and upper critical values, respectively. Let ˛a denote the achieved (actual)
significance level, which for two-sided tests is the sum of the favorable major tail (˛M ) and the opposite
minor tail (˛m).

For the upper one-sided case,

CU D minfC W P.X � C jp0/ � ˛g
Reject H0 if X � CU

˛a D P.X � CU jp0/

power D P.X � CU jp/

For the lower one-sided case,

CL D maxfC W P.X � C jp0/ � ˛g
Reject H0 if X � CL

˛a D P.X � CLjp0/

power D P.X � CLjp/

For the two-sided case,

CL D maxfC W P.X � C jp0/ �
˛

2
g

CU D minfC W P.X � C jp0/ �
˛

2
g

Reject H0 if X � CL orX � CU
˛a D P.X � CL orX � CU jp0/

power D P.X � CL orX � CU jp/

z Test for Binomial Proportion Using Null Variance (TEST=Z VAREST=NULL)
For the normal approximation test, the test statistic is

Z.X/ D
X �Np0

ŒNp0.1 � p0/�
1
2

For the METHOD=EXACT option, the computations are the same as described in the section “Exact Test of
a Binomial Proportion (TEST=EXACT)” on page 7232 except for the definitions of the critical values.

For the upper one-sided case,

CU D minfC W Z.C/ � z1�˛g
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For the lower one-sided case,

CL D maxfC W Z.C/ � z˛g

For the two-sided case,

CL D maxfC W Z.C/ � z˛
2
g

CU D minfC W Z.C/ � z1�˛
2
g

For the METHOD=NORMAL option, the test statistic Z.X/ is assumed to have the normal distribution

N

 
N
1
2 .p � p0/

Œp0.1 � p0/�
1
2

;
p.1 � p/

p0.1 � p0/

!
The approximate power is computed as

power D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

ˆ

 
z˛C
p
N

p�p0p
p0.1�p0/q

p.1�p/
p0.1�p0/

!
; upper one-sided

ˆ

 
z˛�
p
N

p�p0p
p0.1�p0/q

p.1�p/
p0.1�p0/

!
; lower one-sided

ˆ

 
z˛
2
C
p
N

p�p0p
p0.1�p0/q

p.1�p/
p0.1�p0/

!
Cˆ

 
z˛
2
�
p
N

p�p0p
p0.1�p0/q

p.1�p/
p0.1�p0/

!
; two-sided

The approximate sample size is computed in closed form for the one-sided cases by inverting the power
equation,

N D

 
zpower

p
p.1 � p/C z1�˛

p
p0.1 � p0/

p � p0

!2
and by numerical inversion for the two-sided case.

z Test for Binomial Proportion Using Sample Variance (TEST=Z VAREST=SAMPLE)
For the normal approximation test using the sample variance, the test statistic is

Zs.X/ D
X �Np0

ŒN Op.1 � Op/�
1
2

where Op D X=N .

For the METHOD=EXACT option, the computations are the same as described in the section “Exact Test of
a Binomial Proportion (TEST=EXACT)” on page 7232 except for the definitions of the critical values.

For the upper one-sided case,

CU D minfC W Zs.C / � z1�˛g
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For the lower one-sided case,

CL D maxfC W Zs.C / � z˛g

For the two-sided case,

CL D maxfC W Zs.C / � z˛
2
g

CU D minfC W Zs.C / � z1�˛
2
g

For the METHOD=NORMAL option, the test statistic Zs.X/ is assumed to have the normal distribution

N

 
N

1
2 .p � p0/

Œp.1 � p/�
1
2

; 1

!

(see Chow, Shao, and Wang (2003, p. 82)).

The approximate power is computed as

power D

8̂̂̂<̂
ˆ̂:
ˆ
�
z˛ C

p
N p�p0p

p.1�p/

�
; upper one-sided

ˆ
�
z˛ �

p
N p�p0p

p.1�p/

�
; lower one-sided

ˆ
�
z˛
2
C
p
N p�p0p

p.1�p/

�
Cˆ

�
z˛
2
�
p
N p�p0p

p.1�p/

�
; two-sided

The approximate sample size is computed in closed form for the one-sided cases by inverting the power
equation,

N D p.1 � p/

�
zpower C z1�˛

p � p0

�2
and by numerical inversion for the two-sided case.

z Test for Binomial Proportion with Continuity Adjustment Using Null Variance (TEST=ADJZ
VAREST=NULL)
For the normal approximation test with continuity adjustment, the test statistic is (Pagano and Gauvreau
1993, p. 295):

Zc.X/ D
X �Np0 C 0:5.1fX<Np0g/ � 0:5.1fX>Np0g/

ŒNp0.1 � p0/�
1
2

For the METHOD=EXACT option, the computations are the same as described in the section “Exact Test of
a Binomial Proportion (TEST=EXACT)” on page 7232 except for the definitions of the critical values.

For the upper one-sided case,

CU D minfC W Zc.C / � z1�˛g
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For the lower one-sided case,

CL D maxfC W Zc.C / � z˛g

For the two-sided case,

CL D maxfC W Zc.C / � z˛
2
g

CU D minfC W Zc.C / � z1�˛
2
g

For the METHOD=NORMAL option, the test statistic Zc.X/ is assumed to have the normal distribution
N.�; �2/, where � and �2 are derived as follows.

For convenience of notation, define

k D
1

2
p
Np0.1 � p0/

Then

E ŒZc.X/� D 2kNp � 2kNp0 C kP.X < Np0/ � kP.X > Np0/

and

Var ŒZc.X/� D 4k2Np.1 � p/C k2 Œ1 � P.X D Np0/� � k2 ŒP.X < Np0/ � P.X > Np0/�
2

C 4k2
�
E
�
X1fX<Np0g

�
�E

�
X1fX>Np0g

��
� 4k2Np ŒP.X < Np0/ � P.X > Np0/�

The probabilities P.X D Np0/, P.X < Np0/, and P.X > Np0/ and the truncated expectations
E
�
X1fX<Np0g

�
and E

�
X1fX>Np0g

�
are approximated by assuming the normal-approximate distribution of

X, N.Np;Np.1 � p//. Letting �.�/ and ˆ.�/ denote the standard normal PDF and CDF, respectively, and
defining d as

d D
Np0 �Np

ŒNp.1 � p/�
1
2

the terms are computed as follows:

P.X D Np0/ D 0

P.X < Np0/ D ˆ.d/

P.X > Np0/ D 1 �ˆ.d/

E
�
X1fX<Np0g

�
D Npˆ.d/ � ŒNp.1 � p/�

1
2 �.d/

E
�
X1fX>Np0g

�
D Np Œ1 �ˆ.d/�C ŒNp.1 � p/�

1
2 �.d/

The mean and variance of Zc.X/ are thus approximated by

� D k Œ2Np � 2Np0 C 2ˆ.d/ � 1�
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and

�2 D 4k2
h
Np.1 � p/Cˆ.d/ .1 �ˆ.d// � 2 .Np.1 � p//

1
2 �.d/

i
The approximate power is computed as

power D

8̂̂̂<̂
ˆ̂:
ˆ
�
z˛C�
�

�
; upper one-sided

ˆ
�z˛��

�

�
; lower one-sided

ˆ

�
z˛
2
C�

�

�
Cˆ

�z˛
2
��

�

�
; two-sided

The approximate sample size is computed by numerical inversion.

z Test for Binomial Proportion with Continuity Adjustment Using Sample Variance (TEST=ADJZ
VAREST=SAMPLE)
For the normal approximation test with continuity adjustment using the sample variance, the test statistic is

Zcs.X/ D
X �Np0 C 0:5.1fX<Np0g/ � 0:5.1fX>Np0g/

ŒN Op.1 � Op/�
1
2

where Op D X=N .

For the METHOD=EXACT option, the computations are the same as described in the section “Exact Test of
a Binomial Proportion (TEST=EXACT)” on page 7232 except for the definitions of the critical values.

For the upper one-sided case,

CU D minfC W Zcs.C / � z1�˛g

For the lower one-sided case,

CL D maxfC W Zcs.C / � z˛g

For the two-sided case,

CL D maxfC W Zcs.C / � z˛
2
g

CU D minfC W Zcs.C / � z1�˛
2
g

For the METHOD=NORMAL option, the test statistic Zcs.X/ is assumed to have the normal distribution
N.�; �2/, where � and �2 are derived as follows.

For convenience of notation, define

k D
1

2
p
Np.1 � p/
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Then

E ŒZcs.X/� � 2kNp � 2kNp0 C kP.X < Np0/ � kP.X > Np0/

and

Var ŒZcs.X/� � 4k2Np.1 � p/C k2 Œ1 � P.X D Np0/� � k2 ŒP.X < Np0/ � P.X > Np0/�
2

C 4k2
�
E
�
X1fX<Np0g

�
�E

�
X1fX>Np0g

��
� 4k2Np ŒP.X < Np0/ � P.X > Np0/�

The probabilities P.X D Np0/, P.X < Np0/, and P.X > Np0/ and the truncated expectations
E
�
X1fX<Np0g

�
and E

�
X1fX>Np0g

�
are approximated by assuming the normal-approximate distribution of

X, N.Np;Np.1 � p//. Letting �.�/ and ˆ.�/ denote the standard normal PDF and CDF, respectively, and
defining d as

d D
Np0 �Np

ŒNp.1 � p/�
1
2

the terms are computed as follows:

P.X D Np0/ D 0

P.X < Np0/ D ˆ.d/

P.X > Np0/ D 1 �ˆ.d/

E
�
X1fX<Np0g

�
D Npˆ.d/ � ŒNp.1 � p/�

1
2 �.d/

E
�
X1fX>Np0g

�
D Np Œ1 �ˆ.d/�C ŒNp.1 � p/�

1
2 �.d/

The mean and variance of Zcs.X/ are thus approximated by

� D k Œ2Np � 2Np0 C 2ˆ.d/ � 1�

and

�2 D 4k2
h
Np.1 � p/Cˆ.d/ .1 �ˆ.d// � 2 .Np.1 � p//

1
2 �.d/

i
The approximate power is computed as

power D

8̂̂̂<̂
ˆ̂:
ˆ
�
z˛C�
�

�
; upper one-sided

ˆ
�z˛��

�

�
; lower one-sided

ˆ

�
z˛
2
C�

�

�
Cˆ

�z˛
2
��

�

�
; two-sided

The approximate sample size is computed by numerical inversion.
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Exact Equivalence Test of a Binomial Proportion (TEST=EQUIV_EXACT)
The hypotheses for the equivalence test are

H0Wp < �L or p > �U

H1W�L � p � �U

where �L and �U are the lower and upper equivalence bounds, respectively.

The analysis is the two one-sided tests (TOST) procedure as described in Chow, Shao, and Wang (2003) on p.
84, but using exact critical values as on p. 116 instead of normal-based critical values.

Two different hypothesis tests are carried out:

Ha0Wp < �L

Ha1Wp � �L

and

Hb0Wp > �U

Hb1Wp � �U

If Ha0 is rejected in favor of Ha1 and Hb0 is rejected in favor of Hb1, then H0 is rejected in favor of H1.

The test statistic for each of the two tests (Ha0 versus Ha1 and Hb0 versus Hb1) is

X D number of successes Ï Bin.N; p/

Let CU denote the critical value of the exact upper one-sided test of Ha0 versus Ha1, and let CL denote the
critical value of the exact lower one-sided test of Hb0 versus Hb1. These critical values are computed in
the section “Exact Test of a Binomial Proportion (TEST=EXACT)” on page 7232. Both of these tests are
rejected if and only if CU � X � CL. Thus, the exact power of the equivalence test is

power D P .CU � X � CL/
D P .X � CU / � P .X � CL C 1/

The probabilities are computed using Johnson and Kotz (1970, equation 3.20).

z Equivalence Test for Binomial Proportion Using Null Variance (TEST=EQUIV_Z VAREST=NULL)
The hypotheses for the equivalence test are

H0Wp < �L or p > �U

H1W�L � p � �U

where �L and �U are the lower and upper equivalence bounds, respectively.

The analysis is the two one-sided tests (TOST) procedure as described in Chow, Shao, and Wang (2003) on p.
84, but using the null variance instead of the sample variance.
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Two different hypothesis tests are carried out:

Ha0Wp < �L

Ha1Wp � �L

and

Hb0Wp > �U

Hb1Wp � �U

If Ha0 is rejected in favor of Ha1 and Hb0 is rejected in favor of Hb1, then H0 is rejected in favor of H1.

The test statistic for the test of Ha0 versus Ha1 is

ZL.X/ D
X �N�L

ŒN�L.1 � �L/�
1
2

The test statistic for the test of Hb0 versus Hb1 is

ZU .X/ D
X �N�U

ŒN�U .1 � �U /�
1
2

For the METHOD=EXACT option, let CU denote the critical value of the exact upper one-sided test of Ha0
versus Ha1 using ZL.X/. This critical value is computed in the section “z Test for Binomial Proportion
Using Null Variance (TEST=Z VAREST=NULL)” on page 7233. Similarly, let CL denote the critical value
of the exact lower one-sided test of Hb0 versus Hb1 using ZU .X/. Both of these tests are rejected if and
only if CU � X � CL. Thus, the exact power of the equivalence test is

power D P .CU � X � CL/
D P .X � CU / � P .X � CL C 1/

The probabilities are computed using Johnson and Kotz (1970, equation 3.20).

For the METHOD=NORMAL option, the test statistic ZL.X/ is assumed to have the normal distribution

N

 
N
1
2 .p � �L/

Œ�L.1 � �L/�
1
2

;
p.1 � p/

�L.1 � �L/

!
and the test statistic ZU .X/ is assumed to have the normal distribution

N

 
N
1
2 .p � �U /

Œ�U .1 � �U /�
1
2

;
p.1 � p/

�U .1 � �U /

!
(see Chow, Shao, and Wang (2003, p. 84)). The approximate power is computed as

power D ˆ

0B@z˛ �
p
N p��Up

�U .1��U /q
p.1�p/
�U .1��U /

1CACˆ
0B@z˛ C

p
N p��Lp

�L.1��L/q
p.1�p/
�L.1��L/

1CA � 1
The approximate sample size is computed by numerically inverting the power formula, using the sample size
estimate N0 of Chow, Shao, and Wang (2003, p. 85) as an initial guess:

N0 D p.1 � p/

�
z1�˛ C z.1Cpower/=2

0:5.�U � �L/� j p � 0:5.�L C �U / j

�2
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z Equivalence Test for Binomial Proportion Using Sample Variance (TEST=EQUIV_Z
VAREST=SAMPLE)
The hypotheses for the equivalence test are

H0Wp < �L or p > �U

H1W�L � p � �U

where �L and �U are the lower and upper equivalence bounds, respectively.

The analysis is the two one-sided tests (TOST) procedure as described in Chow, Shao, and Wang (2003) on p.
84.

Two different hypothesis tests are carried out:

Ha0Wp < �L

Ha1Wp � �L

and

Hb0Wp > �U

Hb1Wp � �U

If Ha0 is rejected in favor of Ha1 and Hb0 is rejected in favor of Hb1, then H0 is rejected in favor of H1.

The test statistic for the test of Ha0 versus Ha1 is

ZsL.X/ D
X �N�L

ŒN Op.1 � Op/�
1
2

where Op D X=N .

The test statistic for the test of Hb0 versus Hb1 is

ZsU .X/ D
X �N�U

ŒN Op.1 � Op/�
1
2

For the METHOD=EXACT option, let CU denote the critical value of the exact upper one-sided test of Ha0
versus Ha1 using ZsL.X/. This critical value is computed in the section “z Test for Binomial Proportion
Using Sample Variance (TEST=Z VAREST=SAMPLE)” on page 7234. Similarly, let CL denote the critical
value of the exact lower one-sided test of Hb0 versus Hb1 using ZsU .X/. Both of these tests are rejected if
and only if CU � X � CL. Thus, the exact power of the equivalence test is

power D P .CU � X � CL/
D P .X � CU / � P .X � CL C 1/

The probabilities are computed using Johnson and Kotz (1970, equation 3.20).

For the METHOD=NORMAL option, the test statistic ZsL.X/ is assumed to have the normal distribution

N

 
N

1
2 .p � �L/

Œp.1 � p/�
1
2

; 1

!
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and the test statistic ZsU .X/ is assumed to have the normal distribution

N

 
N
1
2 .p � �U /

Œp.1 � p/�
1
2

; 1

!

(see Chow, Shao, and Wang (2003), p. 84).

The approximate power is computed as

power D ˆ

 
z˛ �

p
N

p � �Up
p.1 � p/

!
Cˆ

 
z˛ C

p
N

p � �Lp
p.1 � p/

!
� 1

The approximate sample size is computed by numerically inverting the power formula, using the sample size
estimate N0 of Chow, Shao, and Wang (2003, p. 85) as an initial guess:

N0 D p.1 � p/

�
z1�˛ C z.1Cpower/=2

0:5.�U � �L/� j p � 0:5.�L C �U / j

�2

z Equivalence Test for Binomial Proportion with Continuity Adjustment Using Null Variance
(TEST=EQUIV_ADJZ VAREST=NULL)
The hypotheses for the equivalence test are

H0Wp < �L or p > �U

H1W�L � p � �U

where �L and �U are the lower and upper equivalence bounds, respectively.

The analysis is the two one-sided tests (TOST) procedure as described in Chow, Shao, and Wang (2003) on p.
84, but using the null variance instead of the sample variance.

Two different hypothesis tests are carried out:

Ha0Wp < �L

Ha1Wp � �L

and

Hb0Wp > �U

Hb1Wp � �U

If Ha0 is rejected in favor of Ha1 and Hb0 is rejected in favor of Hb1, then H0 is rejected in favor of H1.

The test statistic for the test of Ha0 versus Ha1 is

ZcL.X/ D
X �N�L C 0:5.1fX<N�Lg/ � 0:5.1fX>N�Lg/h

N O�L.1 � O�L/
i 1
2

where Op D X=N .
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The test statistic for the test of Hb0 versus Hb1 is

ZcU .X/ D
X �N�U C 0:5.1fX<N�U g/ � 0:5.1fX>N�U g/h

N O�U .1 � O�U /
i 1
2

For the METHOD=EXACT option, let CU denote the critical value of the exact upper one-sided test of Ha0
versus Ha1 using ZcL.X/. This critical value is computed in the section “z Test for Binomial Proportion
with Continuity Adjustment Using Null Variance (TEST=ADJZ VAREST=NULL)” on page 7235. Similarly,
let CL denote the critical value of the exact lower one-sided test of Hb0 versus Hb1 using ZcU .X/. Both of
these tests are rejected if and only if CU � X � CL. Thus, the exact power of the equivalence test is

power D P .CU � X � CL/
D P .X � CU / � P .X � CL C 1/

The probabilities are computed using Johnson and Kotz (1970, equation 3.20).

For the METHOD=NORMAL option, the test statistic ZcL.X/ is assumed to have the normal distribution
N.�L; �

2
L/, and ZcU .X/ is assumed to have the normal distribution N.�U ; �2U /, where �L, �U , �2L, and

�2U are derived as follows.

For convenience of notation, define

kL D
1

2
p
N�L.1 � �L/

kU D
1

2
p
N�U .1 � �U /

Then

E ŒZcL.X/� � 2kLNp � 2kLN�L C kLP.X < N�L/ � kLP.X > N�L/

E ŒZcU .X/� � 2kUNp � 2kUN�U C kUP.X < N�U / � kUP.X > N�U /

and

Var ŒZcL.X/� � 4k2LNp.1 � p/C k
2
L Œ1 � P.X D N�L/� � k

2
L ŒP.X < N�L/ � P.X > N�L/�

2

C 4k2L
�
E
�
X1fX<N�Lg

�
�E

�
X1fX>N�Lg

��
� 4k2LNp ŒP.X < N�L/ � P.X > N�L/�

Var ŒZcU .X/� � 4k2UNp.1 � p/C k
2
U Œ1 � P.X D N�U /� � k

2
U ŒP.X < N�U / � P.X > N�U /�

2

C 4k2U
�
E
�
X1fX<N�U g

�
�E

�
X1fX>N�U g

��
� 4k2UNp ŒP.X < N�U / � P.X > N�U /�

The probabilities P.X D N�L/, P.X < N�L/, P.X > N�L/, P.X D N�U /, P.X < N�U /, and
P.X > N�U / and the truncated expectations E

�
X1fX<N�Lg

�
, E

�
X1fX>N�Lg

�
, E

�
X1fX<N�Lg

�
, and

E
�
X1fX>N�Lg

�
are approximated by assuming the normal-approximate distribution of X,N.Np;Np.1�p//.
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Letting �.�/ and ˆ.�/ denote the standard normal PDF and CDF, respectively, and defining dL and dU as

dL D
N�L �Np

ŒNp.1 � p/�
1
2

dU D
N�U �Np

ŒNp.1 � p/�
1
2

the terms are computed as follows:

P.X D N�L/ D 0

P.X D N�U / D 0

P.X < N�L/ D ˆ.dL/

P.X < N�U / D ˆ.dU /

P.X > N�L/ D 1 �ˆ.dL/

P.X > N�U / D 1 �ˆ.dU /

E
�
X1fX<N�Lg

�
D Npˆ.dL/ � ŒNp.1 � p/�

1
2 �.dL/

E
�
X1fX<N�U g

�
D Npˆ.dU / � ŒNp.1 � p/�

1
2 �.dU /

E
�
X1fX>N�Lg

�
D Np Œ1 �ˆ.dL/�C ŒNp.1 � p/�

1
2 �.dL/

E
�
X1fX>N�U g

�
D Np Œ1 �ˆ.dU /�C ŒNp.1 � p/�

1
2 �.dU /

The mean and variance of ZcL.X/ and ZcU .X/ are thus approximated by

�L D kL Œ2Np � 2N�L C 2ˆ.dL/ � 1�

�U D kU Œ2Np � 2N�U C 2ˆ.dU / � 1�

and

�2L D 4k
2
L

h
Np.1 � p/Cˆ.dL/ .1 �ˆ.dL// � 2 .Np.1 � p//

1
2 �.dL/

i
�2U D 4k

2
U

h
Np.1 � p/Cˆ.dU / .1 �ˆ.dU // � 2 .Np.1 � p//

1
2 �.dU /

i

The approximate power is computed as

power D ˆ
�
z˛ � �U

�U

�
Cˆ

�
z˛ C �L

�L

�
� 1

The approximate sample size is computed by numerically inverting the power formula.

z Equivalence Test for Binomial Proportion with Continuity Adjustment Using Sample Variance
(TEST=EQUIV_ADJZ VAREST=SAMPLE)
The hypotheses for the equivalence test are

H0Wp < �L or p > �U

H1W�L � p � �U
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where �L and �U are the lower and upper equivalence bounds, respectively.

The analysis is the two one-sided tests (TOST) procedure as described in Chow, Shao, and Wang (2003) on p.
84.

Two different hypothesis tests are carried out:

Ha0Wp < �L

Ha1Wp � �L

and

Hb0Wp > �U

Hb1Wp � �U

If Ha0 is rejected in favor of Ha1 and Hb0 is rejected in favor of Hb1, then H0 is rejected in favor of H1.

The test statistic for the test of Ha0 versus Ha1 is

ZcsL.X/ D
X �N�L C 0:5.1fX<N�Lg/ � 0:5.1fX>N�Lg/

ŒN Op.1 � Op/�
1
2

where Op D X=N .

The test statistic for the test of Hb0 versus Hb1 is

ZcsU .X/ D
X �N�U C 0:5.1fX<N�U g/ � 0:5.1fX>N�U g/

ŒN Op.1 � Op/�
1
2

For the METHOD=EXACT option, let CU denote the critical value of the exact upper one-sided test of Ha0
versus Ha1 using ZcsL.X/. This critical value is computed in the section “z Test for Binomial Proportion
with Continuity Adjustment Using Sample Variance (TEST=ADJZ VAREST=SAMPLE)” on page 7237.
Similarly, let CL denote the critical value of the exact lower one-sided test ofHb0 versusHb1 usingZcsU .X/.
Both of these tests are rejected if and only if CU � X � CL. Thus, the exact power of the equivalence test is

power D P .CU � X � CL/
D P .X � CU / � P .X � CL C 1/

The probabilities are computed using Johnson and Kotz (1970, equation 3.20).

For the METHOD=NORMAL option, the test statistic ZcsL.X/ is assumed to have the normal distribution
N.�L; �

2
L/, and ZcsU .X/ is assumed to have the normal distribution N.�U ; �2U /, where �L, �U , �2L and

�2U are derived as follows.

For convenience of notation, define

k D
1

2
p
Np.1 � p/
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Then

E ŒZcsL.X/� � 2kNp � 2kN�L C kP.X < N�L/ � kP.X > N�L/

E ŒZcsU .X/� � 2kNp � 2kN�U C kP.X < N�U / � kP.X > N�U /

and

Var ŒZcsL.X/� � 4k2Np.1 � p/C k2 Œ1 � P.X D N�L/� � k2 ŒP.X < N�L/ � P.X > N�L/�
2

C 4k2
�
E
�
X1fX<N�Lg

�
�E

�
X1fX>N�Lg

��
� 4k2Np ŒP.X < N�L/ � P.X > N�L/�

Var ŒZcsU .X/� � 4k2Np.1 � p/C k2 Œ1 � P.X D N�U /� � k2 ŒP.X < N�U / � P.X > N�U /�
2

C 4k2
�
E
�
X1fX<N�U g

�
�E

�
X1fX>N�U g

��
� 4k2Np ŒP.X < N�U / � P.X > N�U /�

The probabilities P.X D N�L/, P.X < N�L/, P.X > N�L/, P.X D N�U /, P.X < N�U /, and
P.X > N�U / and the truncated expectations E

�
X1fX<N�Lg

�
, E

�
X1fX>N�Lg

�
, E

�
X1fX<N�Lg

�
, and

E
�
X1fX>N�Lg

�
are approximated by assuming the normal-approximate distribution of X,N.Np;Np.1�p//.

Letting �.�/ and ˆ.�/ denote the standard normal PDF and CDF, respectively, and defining dL and dU as

dL D
N�L �Np

ŒNp.1 � p/�
1
2

dU D
N�U �Np

ŒNp.1 � p/�
1
2

the terms are computed as follows:

P.X D N�L/ D 0

P.X D N�U / D 0

P.X < N�L/ D ˆ.dL/

P.X < N�U / D ˆ.dU /

P.X > N�L/ D 1 �ˆ.dL/

P.X > N�U / D 1 �ˆ.dU /

E
�
X1fX<N�Lg

�
D Npˆ.dL/ � ŒNp.1 � p/�

1
2 �.dL/

E
�
X1fX<N�U g

�
D Npˆ.dU / � ŒNp.1 � p/�

1
2 �.dU /

E
�
X1fX>N�Lg

�
D Np Œ1 �ˆ.dL/�C ŒNp.1 � p/�

1
2 �.dL/

E
�
X1fX>N�U g

�
D Np Œ1 �ˆ.dU /�C ŒNp.1 � p/�

1
2 �.dU /

The mean and variance of ZcsL.X/ and ZcsU .X/ are thus approximated by

�L D k Œ2Np � 2N�L C 2ˆ.dL/ � 1�

�U D k Œ2Np � 2N�U C 2ˆ.dU / � 1�
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and

�2L D 4k
2
h
Np.1 � p/Cˆ.dL/ .1 �ˆ.dL// � 2 .Np.1 � p//

1
2 �.dL/

i
�2U D 4k

2
h
Np.1 � p/Cˆ.dU / .1 �ˆ.dU // � 2 .Np.1 � p//

1
2 �.dU /

i

The approximate power is computed as

power D ˆ
�
z˛ � �U

�U

�
Cˆ

�
z˛ C �L

�L

�
� 1

The approximate sample size is computed by numerically inverting the power formula.

Wilson Score Confidence Interval for Binomial Proportion (CI=WILSON)
The two-sided 100.1 � ˛/% confidence interval for p is

X C
z2
1�˛=2

2

N C z2
1�˛=2

˙
z1�˛=2N

1
2

N C z2
1�˛=2

 
Op.1 � Op/C

z2
1�˛=2

4N

! 1
2

So the half-width for the two-sided 100.1 � ˛/% confidence interval is

half-width D
z1�˛=2N

1
2

N C z2
1�˛=2

 
Op.1 � Op/C

z2
1�˛=2

4N

! 1
2

Prob(Width) is calculated exactly by adding up the probabilities of observing each X 2 f1; : : : ; N g that
produces a confidence interval whose half-width is at most a target value h:

Prob.Width/ D
NX
iD0

P.X D i/1half-width<h

For references and more details about this and all other confidence intervals associated with the CI= option,
see “Binomial Proportion” on page 2702 in Chapter 40, “The FREQ Procedure.”

Agresti-Coull “Add k Successes and Failures” Confidence Interval for Binomial Proportion
(CI=AGRESTICOULL)
The two-sided 100.1 � ˛/% confidence interval for p is

X C
z2
1�˛=2

2

N C z2
1�˛=2

˙ z1�˛=2

0BBBBB@
XC

z2
1�˛=2
2

NCz2
1�˛=2

 
1 �

XC
z2
1�˛=2
2

NCz2
1�˛=2

!
N C z2

1�˛=2

1CCCCCA

1
2



7248 F Chapter 89: The POWER Procedure

So the half-width for the two-sided 100.1 � ˛/% confidence interval is

half-width D z1�˛=2

0BBBBB@
XC

z2
1�˛=2
2

NCz2
1�˛=2

 
1 �

XC
z2
1�˛=2
2

NCz2
1�˛=2

!
N C z2

1�˛=2

1CCCCCA

1
2

Prob(Width) is calculated exactly by adding up the probabilities of observing each X 2 f1; : : : ; N g that
produces a confidence interval whose half-width is at most a target value h:

Prob.Width/ D
NX
iD0

P.X D i/1half-width<h

Jeffreys Confidence Interval for Binomial Proportion (CI=JEFFREYS)
The two-sided 100.1 � ˛/% confidence interval for p is

ŒLJ .X/; UJ .X/�

where

LJ .X/ D

�
0; X D 0

Beta˛=2IXC1=2;N�XC1=2; X > 0

and

UJ .X/ D

�
Beta1�˛=2IXC1=2;N�XC1=2; X < N

1; X D N

The half-width of this two-sided 100.1 � ˛/% confidence interval is defined as half the width of the full
interval:

half-width D
1

2
.UJ .X/ � LJ .X//

Prob(Width) is calculated exactly by adding up the probabilities of observing each X 2 f1; : : : ; N g that
produces a confidence interval whose half-width is at most a target value h:

Prob.Width/ D
NX
iD0

P.X D i/1half-width<h
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Exact Clopper-Pearson Confidence Interval for Binomial Proportion (CI=EXACT)
The two-sided 100.1 � ˛/% confidence interval for p is

ŒLE .X/; UE .X/�

where

LE .X/ D

�
0; X D 0

Beta˛=2IX;N�XC1; X > 0

and

UE .X/ D

�
Beta1�˛=2IXC1;N�X ; X < N

1; X D N

The half-width of this two-sided 100.1 � ˛/% confidence interval is defined as half the width of the full
interval:

half-width D
1

2
.UE .X/ � LE .X//

Prob(Width) is calculated exactly by adding up the probabilities of observing each X 2 f1; : : : ; N g that
produces a confidence interval whose half-width is at most a target value h:

Prob.Width/ D
NX
iD0

P.X D i/1half-width<h

Wald Confidence Interval for Binomial Proportion (CI=WALD)
The two-sided 100.1 � ˛/% confidence interval for p is

Op ˙ z1�˛=2

�
Op.1 � Op/

N

� 1
2

So the half-width for the two-sided 100.1 � ˛/% confidence interval is

half-width D z1�˛=2

�
Op.1 � Op/

N

� 1
2

Prob(Width) is calculated exactly by adding up the probabilities of observing each X 2 f1; : : : ; N g that
produces a confidence interval whose half-width is at most a target value h:

Prob.Width/ D
NX
iD0

P.X D i/1half-width<h
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Continuity-Corrected Wald Confidence Interval for Binomial Proportion (CI=WALD_CORRECT)
The two-sided 100.1 � ˛/% confidence interval for p is

Op ˙

"
z1�˛=2

�
Op.1 � Op/

N

� 1
2

C
1

2N

#

So the half-width for the two-sided 100.1 � ˛/% confidence interval is

half-width D z1�˛=2

�
Op.1 � Op/

N

� 1
2

C
1

2N

Prob(Width) is calculated exactly by adding up the probabilities of observing each X 2 f1; : : : ; N g that
produces a confidence interval whose half-width is at most a target value h:

Prob.Width/ D
NX
iD0

P.X D i/1half-width<h

Analyses in the ONESAMPLEMEANS Statement

One-Sample t Test (TEST=T)
The hypotheses for the one-sample t test are

H0W� D �0

H1W

8<:
� ¤ �0; two-sided
� > �0; upper one-sided
� < �0; lower one-sided

The test assumes normally distributed data and requires N � 2. The test statistics are

t D N
1
2

�
Nx � �0

s

�
Ï t .N � 1; ı/

t2 Ï F.1;N � 1; ı2/

where Nx is the sample mean, s is the sample standard deviation, and

ı D N
1
2

�� � �0
�

�
The test is

Reject H0 if

8<:
t2 � F1�˛.1;N � 1/; two-sided
t � t1�˛.N � 1/; upper one-sided
t � t˛.N � 1/; lower one-sided
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Exact power computations for t tests are discussed in O’Brien and Muller (1993, Section 8.2), although not
specifically for the one-sample case. The power is based on the noncentral t and F distributions:

power D

8<:
P
�
F.1;N � 1; ı2/ � F1�˛.1;N � 1/

�
; two-sided

P .t.N � 1; ı/ � t1�˛.N � 1// ; upper one-sided
P .t.N � 1; ı/ � t˛.N � 1// ; lower one-sided

Solutions for N, ˛, and ı are obtained by numerically inverting the power equation. Closed-form solutions
for other parameters, in terms of ı, are as follows:

� D ı�N�
1
2 C �0

� D

(
ı�1N

1
2 .� � �0/; jıj > 0

undefined; otherwise

One-Sample t Test with Lognormal Data (TEST=T DIST=LOGNORMAL)
The lognormal case is handled by reexpressing the analysis equivalently as a normality-based test on the
log-transformed data, by using properties of the lognormal distribution as discussed in Johnson, Kotz, and
Balakrishnan (1994, Chapter 14). The approaches in the section “One-Sample t Test (TEST=T)” on page 7250
then apply.

In contrast to the usual t test on normal data, the hypotheses with lognormal data are defined in terms of
geometric means rather than arithmetic means. This is because the transformation of a null arithmetic mean
of lognormal data to the normal scale depends on the unknown coefficient of variation, resulting in an
ill-defined hypothesis on the log-transformed data. Geometric means transform cleanly and are more natural
for lognormal data.

The hypotheses for the one-sample t test with lognormal data are

H0W


0
D 1

H1W

8̂<̂
:


0
¤ 1; two-sided


0
> 1; upper one-sided


0
< 1; lower one-sided

Let �? and �? be the (arithmetic) mean and standard deviation of the normal distribution of the log-
transformed data. The hypotheses can be rewritten as follows:

H0W�
?
D log.0/

H1W

8<:
�? ¤ log.0/; two-sided
�? > log.0/; upper one-sided
�? < log.0/; lower one-sided

where �? D log./.
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The test assumes lognormally distributed data and requires N � 2.

The power is

power D

8<:
P
�
F.1;N � 1; ı2/ � F1�˛.1;N � 1/

�
; two-sided

P .t.N � 1; ı/ � t1�˛.N � 1// ; upper one-sided
P .t.N � 1; ı/ � t˛.N � 1// ; lower one-sided

where

ı D N
1
2

�
�? � log.0/

�?

�
�? D

�
log.CV2 C 1/

� 1
2

Equivalence Test for Mean of Normal Data (TEST=EQUIV DIST=NORMAL)
The hypotheses for the equivalence test are

H0W� < �L or � > �U

H1W�L � � � �U

The analysis is the two one-sided tests (TOST) procedure of Schuirmann (1987). The test assumes normally
distributed data and requires N � 2. Phillips (1990) derives an expression for the exact power assuming a
two-sample balanced design; the results are easily adapted to a one-sample design:

power D QN�1

 
.�t1�˛.N � 1//;

� � �U

�N�
1
2

I 0;
.N � 1/

1
2 .�U � �L/

2�N�
1
2 .t1�˛.N � 1//

!
�

QN�1

 
.t1�˛.N � 1//;

� � �L

�N�
1
2

I 0;
.N � 1/

1
2 .�U � �L/

2�N�
1
2 .t1�˛.N � 1//

!

where Q�.�; �I �; �/ is Owen’s Q function, defined in the section “Common Notation” on page 7223.

Equivalence Test for Mean of Lognormal Data (TEST=EQUIV DIST=LOGNORMAL)
The lognormal case is handled by reexpressing the analysis equivalently as a normality-based test on the
log-transformed data, by using properties of the lognormal distribution as discussed in Johnson, Kotz, and
Balakrishnan (1994, Chapter 14). The approaches in the section “Equivalence Test for Mean of Normal Data
(TEST=EQUIV DIST=NORMAL)” on page 7252 then apply.

In contrast to the additive equivalence test on normal data, the hypotheses with lognormal data are defined in
terms of geometric means rather than arithmetic means. This is because the transformation of an arithmetic
mean of lognormal data to the normal scale depends on the unknown coefficient of variation, resulting in an
ill-defined hypothesis on the log-transformed data. Geometric means transform cleanly and are more natural
for lognormal data.

The hypotheses for the equivalence test are

H0W � �L or  � �U

H1W�L <  < �U
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where 0 < �L < �U

The analysis is the two one-sided tests (TOST) procedure of Schuirmann (1987) on the log-transformed data.
The test assumes lognormally distributed data and requires N � 2. Diletti, Hauschke, and Steinijans (1991)
derive an expression for the exact power assuming a crossover design; the results are easily adapted to a
one-sample design:

power D QN�1

 
.�t1�˛.N � 1//;

log ./ � log.�U /

�?N�
1
2

I 0;
.N � 1/

1
2 .log.�U / � log.�L//

2�?N�
1
2 .t1�˛.N � 1//

!
�

QN�1

 
.t1�˛.N � 1//;

log ./ � log.�L/

�?N�
1
2

I 0;
.N � 1/

1
2 .log.�U / � log.�L//

2�?N�
1
2 .t1�˛.N � 1//

!
where

�? D
�
log.CV2 C 1/

� 1
2

is the standard deviation of the log-transformed data, and Q�.�; �I �; �/ is Owen’s Q function, defined in the
section “Common Notation” on page 7223.

Confidence Interval for Mean (CI=T)
This analysis of precision applies to the standard t-based confidence interval:h

Nx � t1�˛
2
.N � 1/ sp

N
; Nx C t1�˛

2
.N � 1/ sp

N

i
; two-sidedh

Nx � t1�˛.N � 1/
sp
N
; 1

�
; upper one-sided�

�1; Nx C t1�˛.N � 1/
sp
N

i
; lower one-sided

where Nx is the sample mean and s is the sample standard deviation. The “half-width” is defined as the distance
from the point estimate Nx to a finite endpoint,

half-width D

(
t1�˛

2
.N � 1/ sp

N
; two-sided

t1�˛.N � 1/
sp
N
; one-sided

A “valid” conference interval captures the true mean. The exact probability of obtaining at most the target
confidence interval half-width h, unconditional or conditional on validity, is given by Beal (1989):

Pr.half-width � h/ D

8̂̂̂<̂
ˆ̂:
P

 
�2.N � 1/ � h2N.N�1/

�2.t2
1�˛

2

.N�1//

!
; two-sided

P

�
�2.N � 1/ � h2N.N�1/

�2.t21�˛.N�1//

�
; one-sided

Pr.half-width � hj
validity/

D

8̂<̂
:
�
1
1�˛

�
2
h
QN�1

�
.t1�˛

2
.N � 1//; 0I

0; b1/ �QN�1.0; 0I 0; b1/� ; two-sided�
1
1�˛

�
QN�1 ..t1�˛.N � 1//; 0I 0; b1/ ; one-sided

where

b1 D
h.N � 1/

1
2

�.t1�˛
c
.N � 1//N�

1
2

c D number of sides
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and Q�.�; �I �; �/ is Owen’s Q function, defined in the section “Common Notation” on page 7223.

A “quality” confidence interval is both sufficiently narrow (half-width � h) and valid:

Pr(quality) D Pr.half-width � h and validity/

D Pr.half-width � hjvalidity/.1 � ˛/

Analyses in the ONEWAYANOVA Statement

One-Degree-of-Freedom Contrast (TEST=CONTRAST)
The hypotheses are

H0Wc1�1 C � � � C cG�G D c0

H1W

8<:
c1�1 C � � � C cG�G ¤ c0; two-sided
c1�1 C � � � C cG�G > c0; upper one-sided
c1�1 C � � � C cG�G < c0; lower one-sided

where G is the number of groups, fc1; : : : ; cGg are the contrast coefficients, and c0 is the null contrast value.

The test is the usual F test for a contrast in one-way ANOVA. It assumes normal data with common group
variances and requires N � G C 1 and ni � 1.

O’Brien and Muller (1993, Section 8.2.3.2) give the exact power as

power D

8<:
P
�
F.1;N �G; ı2/ � F1�˛.1;N �G/

�
; two-sided

P .t.N �G; ı/ � t1�˛.N �G// ; upper one-sided
P .t.N �G; ı/ � t˛.N �G// ; lower one-sided

where

ı D N
1
2

0BBBB@
PG
iD1 ci�i � c0

�

�PG
iD1

c2
i

wi

� 1
2

1CCCCA

Overall F Test (TEST=OVERALL)
The hypotheses are

H0W�1 D �2 D � � � D �G

H1W�i ¤ �j for some i; j

where G is the number of groups.

The test is the usual overall F test for equality of means in one-way ANOVA. It assumes normal data with
common group variances and requires N � G C 1 and ni � 1.

O’Brien and Muller (1993, Section 8.2.3.1) give the exact power as

power D P .F.G � 1;N �G; �/ � F1�˛.G � 1;N �G//
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where the noncentrality is

� D N

 PG
iD1wi .�i � N�/

2

�2

!

and

N� D

GX
iD1

wi�i

Analyses in the PAIREDFREQ Statement

Overview of Conditional McNemar tests
Notation:

Case
Failure Success

Control Failure n00 n01 n0�
Success n10 n11 n1�

n�0 n�1 N

n00 D #fcontrol=failure, case=failureg

n01 D #fcontrol=failure, case=successg

n10 D #fcontrol=success, case=failureg

n11 D #fcontrol=success, case=successg

N D n00 C n01 C n10 C n11

nD D n01 C n10 � #discordant pairs

O�ij D
nij

N

�ij D theoretical population value of O�ij
�1� D �10 C �11

��1 D �01 C �11

� D Corr.control observation; case observation/ (within a pair)

DPR D "discordant proportion ratio" D
�01

�10

DPR0 D null DPR

Power formulas are given here in terms of the discordant proportions �10 and �01. If the input is specified in
terms of f�1�; ��1; �g, then it can be converted into values for f�10; �01g as follows:

�01 D ��1.1 � �1�/ � �..1 � �1�/�1�.1 � ��1/��1/
1
2

�10 D �01 C �1� � ��1
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All McNemar tests covered in PROC POWER are conditional, meaning that nD is assumed fixed at its
observed value.

For the usual DPR0 D 1, the hypotheses are

H0W��1 D �1�

H1W

8<:
��1 ¤ �1�; two-sided
��1 > �1�; upper one-sided
��1 < �1�; lower one-sided

The test statistic for both tests covered in PROC POWER (DIST=EXACT_COND and DIST=NORMAL) is
the McNemar statistic QM , which has the following form when DPR0 D 1:

QM0 D
.n01 � n10/

2

n01 C n10

For the conditional McNemar tests, this is equivalent to the square of the Z.X/ statistic for the test of a
single proportion (normal approximation to binomial), where the proportion is �01

�01C�10
, the null is 0.5, and

“N” is nD (see, for example, Schork and Williams 1980):

Z.X/ D
n01 � nD.0:5/

ŒnD0:5.1 � 0:5/�
1
2

�Ï N

0@n 12D. �01
�01C�10

� 0:5/

Œ0:5.1 � 0:5/�
1
2

;

�01
�01C�10

�
1 � �01

�01C�10

�
0:5.1 � 0:5/

1A
D

n01 � .n01 C n10/.0:5/

Œ.n01 C n10/0:5.1 � 0:5/�
1
2

D
n01 � n10

Œn01 C n10�
1
2

D
p
QM0

This can be generalized to a custom null for �01
�01C�10

, which is equivalent to specifying a custom null DPR:

�
�01

�01 C �10

�
0

�

264 1

1C 1
�01
�10

375
0

�
1

1C 1
DPR0

So, a conditional McNemar test (asymptotic or exact) with a custom null is equivalent to the test of a single
proportion p1 � �01

�01C�10
with a null value p0 � 1

1C 1
DPR0

, with a sample size of nD:

H0Wp1 D p0

H1W

8<:
p1 ¤ p0; two-sided
p1 > p0; one-sided U
p1 < p0; one-sided L
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which is equivalent to

H0WDPR D DPR0

H1W

8<:
DPR ¤ DPR0; two-sided
DPR > DPR0; one-sided U
DPR < DPR0; one-sided L

The general form of the test statistic is thus

QM D
.n01 � nDp0/

2

nDp0.1 � p0/

The two most common conditional McNemar tests assume either the exact conditional distribution of QM
(covered by the DIST=EXACT_COND analysis) or a standard normal distribution for QM (covered by the
DIST=NORMAL analysis).

McNemar Exact Conditional Test (TEST=MCNEMAR DIST=EXACT_COND)
For DIST=EXACT_COND, the power is calculated assuming that the test is conducted by using the exact
conditional distribution of QM (conditional on nD). The power is calculated by first computing the
conditional power for each possible nD . The unconditional power is computed as a weighted average over
all possible outcomes of nD:

power D
NX

nDD0

P.nD/P.Reject p1 D p0jnD/

where nD Ï Bin.�01C �10; N /, and P.Reject p1 D p0jnD/ is calculated by using the exact method in the
section “Exact Test of a Binomial Proportion (TEST=EXACT)” on page 7232.

The achieved significance level, reported as “Actual Alpha” in the analysis, is computed in the same way
except by using the actual alpha of the one-sample test in place of its power:

actual alpha D
NX

nDD0

P.nD/˛
?.p1; p0jnD/

where ˛?.p1; p0jnD/ is the actual alpha calculated by using the exact method in the section “Exact Test of a
Binomial Proportion (TEST=EXACT)” on page 7232 with proportion p1, null p0, and sample size nD .

McNemar Normal Approximation Test (TEST=MCNEMAR DIST=NORMAL)
For DIST=NORMAL, power is calculated assuming the test is conducted by using the normal-approximate
distribution of QM (conditional on nD).

For the METHOD=EXACT option, the power is calculated in the same way as described in the section
“McNemar Exact Conditional Test (TEST=MCNEMAR DIST=EXACT_COND)” on page 7257, except
that P.Reject p1 D p0jnD/ is calculated by using the exact method in the section “z Test for Binomial
Proportion Using Null Variance (TEST=Z VAREST=NULL)” on page 7233. The achieved significance
level is calculated in the same way as described at the end of the section “McNemar Exact Conditional Test
(TEST=MCNEMAR DIST=EXACT_COND)” on page 7257.
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For the METHOD=MIETTINEN option, approximate sample size for the one-sided cases is computed
according to equation (5.6) in Miettinen (1968):

N D

�
z1�˛.p10 C p01/C zpower

�
.p10 C p01/

2 �
1
4
.p01 � p10/

2.3C p10 C p01/
� 1
2

�2
.p10 C p01/.p01 � p10/2

Approximate power for the one-sided cases is computed by solving the sample size equation for power, and
approximate power for the two-sided case follows easily by summing the one-sided powers each at ˛=2:

power D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

ˆ

 
.p01�p10/ŒN.p10Cp01/�

1
2�z1�˛.p10Cp01/

Œ.p10Cp01/2� 14 .p01�p10/
2.3Cp10Cp01/�

1
2

!
; upper one-sided

ˆ

 
�.p01�p10/ŒN.p10Cp01/�

1
2�z1�˛.p10Cp01/

Œ.p10Cp01/2� 14 .p01�p10/
2.3Cp10Cp01/�

1
2

!
; lower one-sided

ˆ

 
.p01�p10/ŒN.p10Cp01/�

1
2�z1�˛

2
.p10Cp01/

Œ.p10Cp01/2� 14 .p01�p10/
2.3Cp10Cp01/�

1
2

!
C

ˆ

 
�.p01�p10/ŒN.p10Cp01/�

1
2�z1�˛

2
.p10Cp01/

Œ.p10Cp01/2� 14 .p01�p10/
2.3Cp10Cp01/�

1
2

!
; two-sided

The two-sided solution for N is obtained by numerically inverting the power equation.

In general, compared to METHOD=CONNOR, the METHOD=MIETTINEN approximation tends to be
slightly more accurate but can be slightly anticonservative in the sense of underestimating sample size and
overestimating power (Lachin 1992, p. 1250).

For the METHOD=CONNOR option, approximate sample size for the one-sided cases is computed according
to equation (3) in Connor (1987):

N D

�
z1�˛.p10 C p01/

1
2 C zpower

�
p10 C p01 � .p01 � p10/

2
� 1
2

�2
.p01 � p10/2

Approximate power for the one-sided cases is computed by solving the sample size equation for power, and
approximate power for the two-sided case follows easily by summing the one-sided powers each at ˛=2:

power D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

ˆ

 
.p01�p10/N

1
2�z1�˛.p10Cp01/

1
2

Œp10Cp01�.p01�p10/2�
1
2

!
; upper one-sided

ˆ

 
�.p01�p10/N

1
2�z1�˛.p10Cp01/

1
2

Œp10Cp01�.p01�p10/2�
1
2

!
; lower one-sided

ˆ

 
.p01�p10/N

1
2�z1�˛

2
.p10Cp01/

1
2

Œp10Cp01�.p01�p10/2�
1
2

!
C

ˆ

 
�.p01�p10/N

1
2�z1�˛

2
.p10Cp01/

1
2

Œp10Cp01�.p01�p10/2�
1
2

!
; two-sided

The two-sided solution for N is obtained by numerically inverting the power equation.

In general, compared to METHOD=MIETTINEN, the METHOD=CONNOR approximation tends to be
slightly less accurate but slightly conservative in the sense of overestimating sample size and underestimating
power (Lachin 1992, p. 1250).
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Analyses in the PAIREDMEANS Statement

Paired t Test (TEST=DIFF)
The hypotheses for the paired t test are

H0W�diff D �0

H1W

8<:
�diff ¤ �0; two-sided
�diff > �0; upper one-sided
�diff < �0; lower one-sided

The test assumes normally distributed data and requires N � 2. The test statistics are

t D N
1
2

 
Nd � �0

sd

!
Ï t .N � 1; ı/

t2 Ï F.1;N � 1; ı2/

where Nd and sd are the sample mean and standard deviation of the differences and

ı D N
1
2

�
�diff � �0

�diff

�
and

�diff D
�
�21 C �

2
2 � 2��1�2

� 1
2

The test is

Reject H0 if

8<:
t2 � F1�˛.1;N � 1/; two-sided
t � t1�˛.N � 1/; upper one-sided
t � t˛.N � 1/; lower one-sided

Exact power computations for t tests are given in O’Brien and Muller (1993, Section 8.2.2):

power D

8<:
P
�
F.1;N � 1; ı2/ � F1�˛.1;N � 1/

�
; two-sided

P .t.N � 1; ı/ � t1�˛.N � 1// ; upper one-sided
P .t.N � 1; ı/ � t˛.N � 1// ; lower one-sided

Paired t Test for Mean Ratio with Lognormal Data (TEST=RATIO)
The lognormal case is handled by reexpressing the analysis equivalently as a normality-based test on the
log-transformed data, by using properties of the lognormal distribution as discussed in Johnson, Kotz, and
Balakrishnan (1994, Chapter 14). The approaches in the section “Paired t Test (TEST=DIFF)” on page 7259
then apply.

In contrast to the usual t test on normal data, the hypotheses with lognormal data are defined in terms of
geometric means rather than arithmetic means.
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The hypotheses for the paired t test with lognormal pairs fY1; Y2g are

H0W
2

1
D 0

H1W

8̂<̂
:

2
1
¤ 0; two-sided

2
1
> 0; upper one-sided

2
1
< 0; lower one-sided

Let �?1 , �?2 , �?1 , �?2 , and �? be the (arithmetic) means, standard deviations, and correlation of the bivariate
normal distribution of the log-transformed data flog Y1; log Y2g. The hypotheses can be rewritten as follows:

H0W�
?
2 � �

?
1 D log.0/

H1W

8<:
�?2 � �

?
1 ¤ log.0/; two-sided

�?2 � �
?
1 > log.0/; upper one-sided

�?2 � �
?
1 < log.0/; lower one-sided

where

�?1 D log 1
�?2 D log 2

�?1 D
�
log.CV21 C 1/

� 1
2

�?2 D
�
log.CV22 C 1/

� 1
2

�? D
log f�CV1CV2 C 1g

�?1 �
?
2

and CV1, CV2, and � are the coefficients of variation and the correlation of the original untransformed pairs
fY1; Y2g. The conversion from � to �? is given by equation (44.36) on page 27 of Kotz, Balakrishnan, and
Johnson (2000) and due to Jones and Miller (1966).

The valid range of � is restricted to .�L; �U /, where

�L D

exp
�
�
�
log.CV21 C 1/ log.CV

2
2 C 1/

� 1
2

�
� 1

CV1CV2

�U D

exp
��

log.CV21 C 1/ log.CV
2
2 C 1/

� 1
2

�
� 1

CV1CV2
These bounds are computed from equation (44.36) on page 27 of Kotz, Balakrishnan, and Johnson (2000)
by observing that � is a monotonically increasing function of �? and plugging in the values �? D �1 and
�? D 1. Note that when the coefficients of variation are equal (CV1 D CV2 D CV), the bounds simplify to

�L D
�1

CV2 C 1
�U D 1
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The test assumes lognormally distributed data and requires N � 2. The power is

power D

8<:
P
�
F.1;N � 1; ı2/ � F1�˛.1;N � 1/

�
; two-sided

P .t.N � 1; ı/ � t1�˛.N � 1// ; upper one-sided
P .t.N � 1; ı/ � t˛.N � 1// ; lower one-sided

where

ı D N
1
2

�
�?1 � �

?
2 � log.0/
�?

�
and

�? D
�
�?21 C �

?2
2 � 2�

?�?1 �
?
2

� 1
2

Additive Equivalence Test for Mean Difference with Normal Data (TEST=EQUIV_DIFF)
The hypotheses for the equivalence test are

H0W�diff < �L or �diff > �U

H1W�L � �diff � �U

The analysis is the two one-sided tests (TOST) procedure of Schuirmann (1987). The test assumes normally
distributed data and requires N � 2. Phillips (1990) derives an expression for the exact power assuming a
two-sample balanced design; the results are easily adapted to a paired design:

power D QN�1

 
.�t1�˛.N � 1//;

�diff � �U

�diffN
� 1
2

I 0;
.N � 1/

1
2 .�U � �L/

2�diffN
� 1
2 .t1�˛.N � 1//

!
�

QN�1

 
.t1�˛.N � 1//;

�diff � �L

�diffN
� 1
2

I 0;
.N � 1/

1
2 .�U � �L/

2�diffN
� 1
2 .t1�˛.N � 1//

!
where

�diff D
�
�21 C �

2
2 � 2��1�2

� 1
2

and Q�.�; �I �; �/ is Owen’s Q function, defined in the section “Common Notation” on page 7223.

Multiplicative Equivalence Test for Mean Ratio with Lognormal Data (TEST=EQUIV_RATIO)
The lognormal case is handled by reexpressing the analysis equivalently as a normality-based test on the
log-transformed data, by using properties of the lognormal distribution as discussed in Johnson, Kotz, and
Balakrishnan (1994, Chapter 14). The approaches in the section “Additive Equivalence Test for Mean
Difference with Normal Data (TEST=EQUIV_DIFF)” on page 7261 then apply.

In contrast to the additive equivalence test on normal data, the hypotheses with lognormal data are defined in
terms of geometric means rather than arithmetic means.

The hypotheses for the equivalence test are

H0W
T

R
� �L or

T

R
� �U

H1W�L <
T

R
< �U
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where 0 < �L < �U

The analysis is the two one-sided tests (TOST) procedure of Schuirmann (1987) on the log-transformed data.
The test assumes lognormally distributed data and requires N � 2. Diletti, Hauschke, and Steinijans (1991)
derive an expression for the exact power assuming a crossover design; the results are easily adapted to a
paired design:

power D QN�1

0@.�t1�˛.N � 1//; log
�
T
R

�
� log.�U /

�?N�
1
2

I 0;
.N � 1/

1
2 .log.�U / � log.�L//

2�?N�
1
2 .t1�˛.N � 1//

1A�
QN�1

0@.t1�˛.N � 1//; log
�
T
R

�
� log.�L/

�?N�
1
2

I 0;
.N � 1/

1
2 .log.�U / � log.�L//

2�?N�
1
2 .t1�˛.N � 1//

1A
where �? is the standard deviation of the differences between the log-transformed pairs (in other words,
the standard deviation of log.YT / � log.YR/, where YT and YR are observations from the treatment and
reference, respectively), computed as

�? D
�
�?2R C �

?2
T � 2�

?�?R�
?
T

� 1
2

�?R D
�
log.CV2R C 1/

� 1
2

�?T D
�
log.CV2T C 1/

� 1
2

�? D
log f�CVRCVT C 1g

�?R�
?
T

where CVR, CVT , and � are the coefficients of variation and the correlation of the original untransformed
pairs fYT ; YRg, and Q�.�; �I �; �/ is Owen’s Q function. The conversion from � to �? is given by equation
(44.36) on page 27 of Kotz, Balakrishnan, and Johnson (2000) and due to Jones and Miller (1966), and
Owen’s Q function is defined in the section “Common Notation” on page 7223.

The valid range of � is restricted to .�L; �U /, where

�L D

exp
�
�
�
log.CV2R C 1/ log.CV

2
T C 1/

� 1
2

�
� 1

CVRCVT

�U D

exp
��

log.CV2R C 1/ log.CV
2
T C 1/

� 1
2

�
� 1

CVRCVT

These bounds are computed from equation (44.36) on page 27 of Kotz, Balakrishnan, and Johnson (2000)
by observing that � is a monotonically increasing function of �? and plugging in the values �? D �1 and
�? D 1. Note that when the coefficients of variation are equal (CVR D CVT D CV), the bounds simplify to

�L D
�1

CV2 C 1
�U D 1
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Confidence Interval for Mean Difference (CI=DIFF)
This analysis of precision applies to the standard t-based confidence interval:h

Nd � t1�˛
2
.N � 1/ sdp

N
; Nd C t1�˛

2
.N � 1/ sdp

N

i
; two-sidedh

Nd � t1�˛.N � 1/
sdp
N
; 1

�
; upper one-sided�

�1; Nd C t1�˛.N � 1/
sdp
N

i
; lower one-sided

where Nd and sd are the sample mean and standard deviation of the differences. The “half-width” is defined
as the distance from the point estimate Nd to a finite endpoint,

half-width D

(
t1�˛

2
.N � 1/ sdp

N
; two-sided

t1�˛.N � 1/
sdp
N
; one-sided

A “valid” conference interval captures the true mean difference. The exact probability of obtaining at most
the target confidence interval half-width h, unconditional or conditional on validity, is given by Beal (1989):

Pr.half-width � h/ D

8̂̂̂<̂
ˆ̂:
P

 
�2.N � 1/ � h2N.N�1/

�2diff.t
2

1�˛
2

.N�1//

!
; two-sided

P

�
�2.N � 1/ � h2N.N�1/

�2diff.t
2
1�˛.N�1//

�
; one-sided

Pr.half-width � hj
validity/

D

8̂<̂
:
�
1
1�˛

�
2
h
QN�1

�
.t1�˛

2
.N � 1//; 0I

0; b1/ �QN�1.0; 0I 0; b1/� ; two-sided�
1
1�˛

�
QN�1 ..t1�˛.N � 1//; 0I 0; b1/ ; one-sided

where

�diff D
�
�21 C �

2
2 � 2��1�2

� 1
2

b1 D
h.N � 1/

1
2

�diff.t1�˛
c
.N � 1//N�

1
2

c D number of sides

and Q�.�; �I �; �/ is Owen’s Q function, defined in the section “Common Notation” on page 7223.

A “quality” confidence interval is both sufficiently narrow (half-width � h) and valid:

Pr(quality) D Pr.half-width � hand validity/

D Pr.half-width � hjvalidity/.1 � ˛/

Analyses in the TWOSAMPLEFREQ Statement

Overview of the 2 � 2 Table
Notation:
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Outcome
Failure Success

Group 1 n1 � x1 x1 n1
2 n2 � x2 x2 n2

N �m m N

x1 D #successes in group 1

x2 D #successes in group 2

m D x1 C x2 D total #successes

Op1 D
x1

n1

Op2 D
x2

n2

Op D
m

N
D w1 Op1 C w2 Op2

The hypotheses are

H0Wp2 � p1 D p0

H1W

8<:
p2 � p1 ¤ p0; two-sided
p2 � p1 > p0; upper one-sided
p2 � p1 < p0; lower one-sided

where p0 is constrained to be 0 for the likelihood ratio and Fisher’s exact tests. If p0 < 0 in an upper one-sided
test or p0 > 0 in a lower one-sided test, then the test is a noninferiority test. If p0 > 0 in an upper one-sided
test or p0 < 0 in a lower one-sided test, then the test is a superiority test. Although p0 is unconstrained for
the Pearson chi-square test, p0 ¤ 0 is not recommended for that test. The Farrington-Manning score test is a
better choice when p0 ¤ 0.

Internal calculations are performed in terms of p1, p2, and p0. An input set consisting of OR, p1, and OR0
is transformed as follows:

p2 D
.OR/p1

1 � p1 C .OR/p1
p10 D p1

p20 D
OR0p10

1 � p10 C .OR0/p10
p0 D p20 � p10

An input set consisting of RR, p1, and RR0 is transformed as follows:

p2 D .RR/p1
p10 D p1

p20 D .RR0/p10
p0 D p20 � p10
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The transformation of either OR0 or RR0 to p0 is not unique. The chosen parameterization fixes the null
value p10 at the input value of p1. Some values of OR0 or RR0 might lead to invalid values of p0 (p0 � 0
or p0 � 1), in which case an “Invalid input” error occurs.

Farrington-Manning Score Test for Proportion Difference (TEST=FM)
The Farrington-Manning score test for proportion difference is based on equations (1), (2), and (12) in
Farrington and Manning (1990). The test statistic, which is assumed to have a null distribution of N.0; 1/
under H0, is

zFMD D
Op2 � Op1 � p0h

Qp1.1� Qp1/
n1

C
Qp2.1� Qp2/
n2

i 1
2

D ŒNw1w2�
1
2

Op2 � Op1 � p0

Œw2 Qp1.1 � Qp1/C w1 Qp2.1 � Qp2/�
1
2

where Qp1 and Qp2 are the maximum likelihood estimates of the proportions under the restriction Qp2� Qp1 D p0.

Sample size for the one-sided cases is given by equations (4) and (12) in Farrington and Manning (1990).
One-sided power is computed by inverting the sample size formula. Power for the two-sided case is computed
by adding the lower-sided and upper-sided powers, each evaluated at ˛=2. Sample size for the two-sided case
is obtained by numerically inverting the power formula,

power D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

ˆ

�
.p2�p1�p0/.Nw1w2/

1
2�z1�˛Œw2 Qp1.1� Qp1/Cw1 Qp2.1� Qp2/�

1
2

Œw2p1.1�p1/Cw1p2.1�p2/�
1
2

�
; upper one-sided

ˆ

�
�.p2�p1�p0/.Nw1w2/

1
2�z1�˛Œw2 Qp1.1� Qp1/Cw1 Qp2.1� Qp2/�

1
2

Œw2p1.1�p1/Cw1p2.1�p2/�
1
2

�
; lower one-sided

ˆ

 
.p2�p1�p0/.Nw1w2/

1
2�z1�˛

2
Œw2 Qp1.1� Qp1/Cw1 Qp2.1� Qp2/�

1
2

Œw2p1.1�p1/Cw1p2.1�p2/�
1
2

!
C

ˆ

 
�.p2�p1�p0/.Nw1w2/

1
2�z1�˛

2
Œw2 Qp1.1� Qp1/Cw1 Qp2.1� Qp2/�

1
2

Œw2p1.1�p1/Cw1p2.1�p2/�
1
2

!
; two-sided

where

Qp2 D 2u cos.w/ � b=.3a/
Qp1 D Qp2 � p0

w D .� C cos�1.v=u3//=3
v D b3=.3a/3 � bc=.6a2/C d=.2a/

u D sign.v/
q
b2=.3a/2 � c=.3a/

a D 1C w1=w2

b D � Œ1C w1=w2 C p2 C .w1=w2/p1 C p0.w1=w2 C 2/�

c D p20 C p0.2p2 C w1=w2 C 1/C p2 C .w1=w2/p1

d D �p2p0.1C p0/

For the one-sided cases, a closed-form inversion of the power equation yields an approximate total sample
size of

N D

h
z1�˛ fw2 Qp1.1 � Qp1/C w1 Qp2.1 � Qp2/g

1
2 C zpower fw2p1.1 � p1/C w1p2.1 � p2/g

1
2

i2
w1w2.p2 � p1 � p0/2

For the two-sided case, the solution for N is obtained by numerically inverting the power equation.
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Farrington-Manning Score Test for Relative Risk (TEST=FM_RR)
The Farrington-Manning score test is based on equations (5), (6), and (13) in Farrington and Manning (1990).
The test statistic, which is assumed to have a null distribution of N.0; 1/ under H0, is

zFMR D
Op2 � RR0 Op1�

RR20 Qp1.1� Qp1/
n1

C
Qp2.1� Qp2/
n2

� 1
2

D ŒNw1w2�
1
2

Op2 � RR0 Op1�
w2RR20 Qp1.1 � Qp1/C w1 Qp2.1 � Qp2/

� 1
2

where Qp1 and Qp2 are the maximum likelihood estimates of the proportions under the restriction Qp2= Qp1 D
RR0.

Sample size for the one-sided cases is given by equations (8) and (13) in Farrington and Manning (1990).
One-sided power is computed by inverting the sample size formula. Power for the two-sided case is computed
by adding the lower-sided and upper-sided powers, each evaluated at ˛=2. Sample size for the two-sided case
is obtained by numerically inverting the power formula,

power D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:̂

ˆ

 
. Qp2�RR0 Qp1/.Nw1w2/

1
2�z1�˛Œw2RR20 Qp1.1� Qp1/Cw1 Qp2.1� Qp2/�

1
2

Œw2RR20p1.1�p1/Cw1p2.1�p2/�
1
2

!
; upper one-sided

ˆ

 
�. Qp2�RR0 Qp1/.Nw1w2/

1
2�z1�˛Œw2RR20 Qp1.1� Qp1/Cw1 Qp2.1� Qp2/�

1
2

Œw2RR20p1.1�p1/Cw1p2.1�p2/�
1
2

!
; lower one-sided

ˆ

0@ . Qp2�RR0 Qp1/.Nw1w2/ 12�z1�˛2 Œw2RR20 Qp1.1� Qp1/Cw1 Qp2.1� Qp2/� 12
Œw2RR20p1.1�p1/Cw1p2.1�p2/�

1
2

1AC
ˆ

0@�. Qp2�RR0 Qp1/.Nw1w2/ 12�z1�˛2 Œw2RR20 Qp1.1� Qp1/Cw1 Qp2.1� Qp2/� 12
Œw2RR20p1.1�p1/Cw1p2.1�p2/�

1
2

1A ; two-sided

where

Qp2 D
�b � .b2 � 4ac/

1
2

2a
Qp1 D Qp2=RR0
a D 1C w1=w2

b D � ŒRR0 .1C .w1=w2/p1/C p2 C w1=w2�
c D RR0 .p2 C .w1=w2/p1/

For the one-sided cases, a closed-form inversion of the power equation yields an approximate total sample
size of

N D

�
z1�˛

˚
w2RR20 Qp1.1 � Qp1/C w1 Qp2.1 � Qp2/

	 1
2 C zpower

˚
w2RR20p1.1 � p1/C w1p2.1 � p2/

	 1
2

�2
w1w2.p2 � RR0p1/2

For the two-sided case, the solution for N is obtained by numerically inverting the power equation.
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Pearson Chi-Square Test for Two Proportions (TEST=PCHI)
The usual Pearson chi-square test is unconditional. The test statistic

zP D
Op2 � Op1 � p0h

Op.1 � Op/
�
1
n1
C

1
n2

�i 1
2

D ŒNw1w2�
1
2
Op2 � Op1 � p0

Œ Op.1 � Op/�
1
2

is assumed to have a null distribution of N.0; 1/.

Sample size for the one-sided cases is given by equation (4) in Fleiss, Tytun, and Ury (1980). One-sided
power is computed as suggested by Diegert and Diegert (1981) by inverting the sample size formula. Power
for the two-sided case is computed by adding the lower-sided and upper-sided powers each evaluated at ˛=2.
Sample size for the two-sided case is obtained by numerically inverting the power formula. A custom null
value p0 for the proportion difference p2 � p1 is also supported, but it is not recommended. If you are using
a nondefault null value, then the Farrington-Manning score test is a better choice.

power D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

ˆ

�
.p2�p1�p0/.Nw1w2/

1
2�z1�˛Œ.w1p1Cw2p2/.1�w1p1�w2p2/�

1
2

Œw2p1.1�p1/Cw1p2.1�p2/�
1
2

�
; upper one-sided

ˆ

�
�.p2�p1�p0/.Nw1w2/

1
2�z1�˛Œ.w1p1Cw2p2/.1�w1p1�w2p2/�

1
2

Œw2p1.1�p1/Cw1p2.1�p2/�
1
2

�
; lower one-sided

ˆ

 
.p2�p1�p0/.Nw1w2/

1
2�z1�˛

2
Œ.w1p1Cw2p2/.1�w1p1�w2p2/�

1
2

Œw2p1.1�p1/Cw1p2.1�p2/�
1
2

!
C

ˆ

 
�.p2�p1�p0/.Nw1w2/

1
2�z1�˛

2
Œ.w1p1Cw2p2/.1�w1p1�w2p2/�

1
2

Œw2p1.1�p1/Cw1p2.1�p2/�
1
2

!
; two-sided

For the one-sided cases, a closed-form inversion of the power equation yields an approximate total sample
size

N D

h
z1�˛ f.w1p1 C w2p2/.1 � w1p1 � w2p2/g

1
2 C zpower fw2p1.1 � p1/C w1p2.1 � p2/g

1
2

i2
w1w2.p2 � p1 � p0/2

For the two-sided case, the solution for N is obtained by numerically inverting the power equation.

Likelihood Ratio Chi-Square Test for Two Proportions (TEST=LRCHI)
The usual likelihood ratio chi-square test is unconditional. The test statistic

zLR D .�1fp2<p1g/

vuut2N

2X
iD1

�
wi Opi log

�
Opi

Op

�
C wi .1 � Opi / log

�
1 � Opi

1 � Op

��
is assumed to have a null distribution of N.0; 1/ and an alternative distribution of N.ı; 1/, where

ı D N
1
2 .�1fp2<p1g/

vuut2

2X
iD1

�
wipi log

�
pi

w1p1 C w2p2

�
C wi .1 � pi / log

�
1 � pi

1 � .w1p1 C w2p2/

��
The approximate power is

power D

8̂<̂
:
ˆ.ı � z1�˛/ ; upper one-sided
ˆ.�ı � z1�˛/ ; lower one-sided

ˆ
�
ı � z1�˛

2

�
Cˆ

�
�ı � z1�˛

2

�
; two-sided
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For the one-sided cases, a closed-form inversion of the power equation yield an approximate total sample size

N D

�
zpower C z1�˛

ı

�2
For the two-sided case, the solution for N is obtained by numerically inverting the power equation.

Fisher’s Exact Conditional Test for Two Proportions (Test=FISHER)
Fisher’s exact test is conditional on the observed total number of successes m. Power and sample size
computations are based on a test with similar power properties, the continuity-adjusted arcsine test. The test
statistic

zA D .4Nw1w2/
1
2

"
arcsin

 �
Op2 C

1

2Nw2
.1f Op2< Op1g � 1f Op2> Op1g/

� 1
2

!

�arcsin

 �
Op1 C

1

2Nw1
.1f Op1< Op2g � 1f Op1> Op2g/

� 1
2

!#
is assumed to have a null distribution of N.0; 1/ and an alternative distribution of N.ı; 1/, where

ı D .4Nw1w2/
1
2

"
arcsin

 �
p2 C

1

2Nw2
.1fp2<p1g � 1fp2>p1g/

� 1
2

!

�arcsin

 �
p1 C

1

2Nw1
.1fp1<p2g � 1fp1>p2g/

� 1
2

!#
The approximate power for the one-sided balanced case is given by Walters (1979) and is easily extended to
the unbalanced and two-sided cases:

power D

8̂<̂
:
ˆ.ı � z1�˛/ ; upper one-sided
ˆ.�ı � z1�˛/ ; lower one-sided

ˆ
�
ı � z1�˛

2

�
Cˆ

�
�ı � z1�˛

2

�
; two-sided

The approximation is valid only for N � 1=.2w1w2jp1 � p2j/.

Analyses in the TWOSAMPLEMEANS Statement

Two-Sample t Test Assuming Equal Variances (TEST=DIFF)
The hypotheses for the two-sample t test are

H0W�diff D �0

H1W

8<:
�diff ¤ �0; two-sided
�diff > �0; upper one-sided
�diff < �0; lower one-sided

The test assumes normally distributed data and common standard deviation per group, and it requires N � 3,
n1 � 1, and n2 � 1. The test statistics are

t D N
1
2 .w1w2/

1
2

�
Nx2 � Nx1 � �0

sp

�
Ï t .N � 2; ı/

t2 Ï F.1;N � 2; ı2/



Computational Methods and Formulas F 7269

where Nx1 and Nx2 are the sample means and sp is the pooled standard deviation, and

ı D N
1
2 .w1w2/

1
2

��diff � �0

�

�
The test is

Reject H0 if

8<:
t2 � F1�˛.1;N � 2/; two-sided
t � t1�˛.N � 2/; upper one-sided
t � t˛.N � 2/; lower one-sided

Exact power computations for t tests are given in O’Brien and Muller (1993, Section 8.2.1):

power D

8<:
P
�
F.1;N � 2; ı2/ � F1�˛.1;N � 2/

�
; two-sided

P .t.N � 2; ı/ � t1�˛.N � 2// ; upper one-sided
P .t.N � 2; ı/ � t˛.N � 2// ; lower one-sided

Solutions for N, n1, n2, ˛, and ı are obtained by numerically inverting the power equation. Closed-form
solutions for other parameters, in terms of ı, are as follows:

�diff D ı�.Nw1w2/
� 1
2 C �0

�1 D ı�.Nw1w2/
� 1
2 C �0 � �2

�2 D ı�.Nw1w2/
� 1
2 C �0 � �1

� D

(
ı�1.Nw1w2/

1
2 .�diff � �0/; jıj > 0

undefined; otherwise

w1 D

8<: 1
2
˙

1
2

h
1 � 4ı2�2

N.�diff��0/2

i 1
2
; 0 < jıj � 1

2
N
1
2
j�diff��0j

�

undefined; otherwise

w2 D

8<: 1
2
˙

1
2

h
1 � 4ı2�2

N.�diff��0/2

i 1
2
; 0 < jıj � 1

2
N
1
2
j�diff��0j

�

undefined; otherwise

Finally, here is a derivation of the solution for w1:

Solve the ı equation for w1 (which requires the quadratic formula). Then determine the range of ı given w1:

min
w1
.ı/ D

(
0; when w1 D 0 or 1; if .�diff � �0/ � 0
1
2
N
1
2
.�diff��0/

�
; when w1 D

1
2
; if .�diff � �0/ < 0

max
w1

.ı/ D

(
0; when w1 D 0 or 1; if .�diff � �0/ < 0
1
2
N
1
2
.�diff��0/

�
; when w1 D

1
2
; if .�diff � �0/ � 0

This implies

jıj �
1

2
N
1
2
j�diff � �0j

�
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Two-Sample Satterthwaite t Test Assuming Unequal Variances (TEST=DIFF_SATT)
The hypotheses for the two-sample Satterthwaite t test are

H0W�diff D �0

H1W

8<:
�diff ¤ �0; two-sided
�diff > �0; upper one-sided
�diff < �0; lower one-sided

The test assumes normally distributed data and requires N � 3, n1 � 1, and n2 � 1. The test statistics are

t D
Nx2 � Nx1 � �0�
s21
n1
C

s22
n2

� 1
2

D N
1
2
Nx2 � Nx1 � �0�
s21
w1
C

s22
w2

� 1
2

F D t2

where Nx1 and Nx2 are the sample means and s1 and s2 are the sample standard deviations.

DiSantostefano and Muller (1995, p. 585) state, the test is based on assuming that under H0, F is distributed
as F.1; �/, where � is given by Satterthwaite’s approximation (Satterthwaite 1946),

� D

�
�21
n1
C

�22
n2

�2
�
�2
1
n1

�2
n1�1

C

�
�2
2
n2

�2
n2�1

D

�
�21
w1
C

�22
w2

�2
�
�2
1
w1

�2
Nw1�1

C

�
�2
2
w2

�2
Nw2�1

Since � is unknown, in practice it must be replaced by an estimate

O� D

�
s21
n1
C

s22
n2

�2
�
s2
1
n1

�2
n1�1

C

�
s2
2
n2

�2
n2�1

D

�
s21
w1
C

s22
w2

�2
�
s2
1
w1

�2
Nw1�1

C

�
s2
2
w2

�2
Nw2�1

So the test is

Reject H0 if

8<:
F � F1�˛.1; O�/; two-sided
t � t1�˛. O�/; upper one-sided
t � t˛. O�/; lower one-sided

Exact solutions for power for the two-sided and upper one-sided cases are given in Moser, Stevens, and Watts
(1989). The lower one-sided case follows easily by using symmetry. The equations are as follows:
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power D

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

R1
0 P .F.1;N � 2; �/ >

h.u/F1�˛.1; v.u//ju/ f .u/du; two-sidedR1
0 P

�
t .N � 2; �

1
2 / >

Œh.u/�
1
2 t1�˛.v.u//ju

�
f .u/du; upper one-sidedR1

0 P
�
t .N � 2; �

1
2 / <

Œh.u/�
1
2 t˛.v.u//ju

�
f .u/du; lower one-sided

where

h.u/ D

�
1
n1
C

u
n2

�
.n1 C n2 � 2/�

.n1 � 1/C .n2 � 1/
u�21
�22

��
1
n1
C

�22
�21n2

�

v.u/ D

�
1
n1
C

u
n2

�2
1

n21.n1�1/
C

u2

n22.n2�1/

� D
.�diff � �0/

2

�21
n1
C

�22
n2

f .u/ D
�
�
n1Cn2�2

2

�
�
�
n1�1
2

�
�
�
n2�1
2

� "�21 .n2 � 1/
�22 .n1 � 1/

#n2�1
2

u
n2�3

2

"
1C

�
n2 � 1

n1 � 1

�
u�21

�22

#��n1Cn2�2
2

�

The density f .u/ is obtained from the fact that

u�21

�22
� F.n2 � 1; n1 � 1/

Because the test is biased, the achieved significance level might differ from the nominal significance level.
The actual alpha is computed in the same way as the power, except that the mean difference �diff is replaced
by the null mean difference �0.

Two-Sample Pooled t Test of Mean Ratio with Lognormal Data (TEST=RATIO)
The lognormal case is handled by reexpressing the analysis equivalently as a normality-based test on the
log-transformed data, by using properties of the lognormal distribution as discussed in Johnson, Kotz, and
Balakrishnan (1994, Chapter 14). The approaches in the section “Two-Sample t Test Assuming Equal
Variances (TEST=DIFF)” on page 7268 then apply.

In contrast to the usual t test on normal data, the hypotheses with lognormal data are defined in terms of
geometric means rather than arithmetic means. The test assumes equal coefficients of variation in the two
groups.
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The hypotheses for the two-sample t test with lognormal data are

H0W
2

1
D 0

H1W

8̂<̂
:

2
1
¤ 0; two-sided

2
1
> 0; upper one-sided

2
1
< 0; lower one-sided

Let �?1 , �?2 , and �? be the (arithmetic) means and common standard deviation of the corresponding normal
distributions of the log-transformed data. The hypotheses can be rewritten as follows:

H0W�
?
2 � �

?
1 D log.0/

H1W

8<:
�?2 � �

?
1 ¤ log.0/; two-sided

�?2 � �
?
1 > log.0/; upper one-sided

�?2 � �
?
1 < log.0/; lower one-sided

where

�?1 D log 1
�?2 D log 2

The test assumes lognormally distributed data and requires N � 3, n1 � 1, and n2 � 1.

The power is

power D

8<:
P
�
F.1;N � 2; ı2/ � F1�˛.1;N � 2/

�
; two-sided

P .t.N � 2; ı/ � t1�˛.N � 2// ; upper one-sided
P .t.N � 2; ı/ � t˛.N � 2// ; lower one-sided

where

ı D N
1
2 .w1w2/

1
2

�
�?2 � �

?
1 � log.0/
�?

�
�? D

�
log.CV2 C 1/

� 1
2

Additive Equivalence Test for Mean Difference with Normal Data (TEST=EQUIV_DIFF)
The hypotheses for the equivalence test are

H0W�diff < �L or �diff > �U

H1W�L � �diff � �U
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The analysis is the two one-sided tests (TOST) procedure of Schuirmann (1987). The test assumes normally
distributed data and requires N � 3, n1 � 1, and n2 � 1. Phillips (1990) derives an expression for the exact
power assuming a balanced design; the results are easily adapted to an unbalanced design:

power D QN�2

 
.�t1�˛.N � 2//;

�diff � �U

�N�
1
2 .w1w2/

� 1
2

I 0;
.N � 2/

1
2 .�U � �L/

2�N�
1
2 .w1w2/

� 1
2 .t1�˛.N � 2//

!
�

QN�2

 
.t1�˛.N � 2//;

�diff � �L

�N�
1
2 .w1w2/

� 1
2

I 0;
.N � 2/

1
2 .�U � �L/

2�N�
1
2 .w1w2/

� 1
2 .t1�˛.N � 2//

!

where Q�.�; �I �; �/ is Owen’s Q function, defined in the section “Common Notation” on page 7223.

Multiplicative Equivalence Test for Mean Ratio with Lognormal Data (TEST=EQUIV_RATIO)
The lognormal case is handled by reexpressing the analysis equivalently as a normality-based test on the
log-transformed data, by using properties of the lognormal distribution as discussed in Johnson, Kotz, and
Balakrishnan (1994, Chapter 14). The approaches in the section “Additive Equivalence Test for Mean
Difference with Normal Data (TEST=EQUIV_DIFF)” on page 7272 then apply.

In contrast to the additive equivalence test on normal data, the hypotheses with lognormal data are defined in
terms of geometric means rather than arithmetic means.

The hypotheses for the equivalence test are

H0W
T

R
� �L or

T

R
� �U

H1W�L <
T

R
< �U

where 0 < �L < �U

The analysis is the two one-sided tests (TOST) procedure of Schuirmann (1987) on the log-transformed data.
The test assumes lognormally distributed data and requires N � 3, n1 � 1, and n2 � 1. Diletti, Hauschke,
and Steinijans (1991) derive an expression for the exact power assuming a crossover design; the results are
easily adapted to an unbalanced two-sample design:

power D QN�2

0@.�t1�˛.N � 2//; log
�
T
R

�
� log.�U /

�?N�
1
2 .w1w2/

� 1
2

I 0;
.N � 2/

1
2 .log.�U / � log.�L//

2�?N�
1
2 .w1w2/

� 1
2 .t1�˛.N � 2//

1A �

QN�2

0@.t1�˛.N � 2//; log
�
T
R

�
� log.�L/

�?N�
1
2 .w1w2/

� 1
2

I 0;
.N � 2/

1
2 .log.�U / � log.�L//

2�?N�
1
2 .w1w2/

� 1
2 .t1�˛.N � 2//

1A
where

�? D
�
log.CV2 C 1/

� 1
2

is the (assumed common) standard deviation of the normal distribution of the log-transformed data, and
Q�.�; �I �; �/ is Owen’s Q function, defined in the section “Common Notation” on page 7223.
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Confidence Interval for Mean Difference (CI=DIFF)
This analysis of precision applies to the standard t-based confidence interval:h

. Nx2 � Nx1/ � t1�˛
2
.N � 2/

spp
Nw1w2

;

. Nx2 � Nx1/C t1�˛
2
.N � 2/

spp
Nw1w2

i
; two-sidedh

. Nx2 � Nx1/ � t1�˛.N � 2/
spp
Nw1w2

; 1
�
; upper one-sided�

�1; . Nx2 � Nx1/C t1�˛.N � 2/
spp
Nw1w2

i
; lower one-sided

where Nx1 and Nx2 are the sample means and sp is the pooled standard deviation. The “half-width” is defined
as the distance from the point estimate Nx2 � Nx1 to a finite endpoint,

half-width D

(
t1�˛

2
.N � 2/

spp
Nw1w2

; two-sided
t1�˛.N � 2/

spp
Nw1w2

; one-sided

A “valid” conference interval captures the true mean. The exact probability of obtaining at most the target
confidence interval half-width h, unconditional or conditional on validity, is given by Beal (1989):

Pr.half-width � h/ D

8̂̂̂<̂
ˆ̂:
P

 
�2.N � 2/ � h2N.N�2/.w1w2/

�2.t2
1�˛

2

.N�2//

!
; two-sided

P

�
�2.N � 2/ � h2N.N�2/.w1w2/

�2.t21�˛.N�2//

�
; one-sided

Pr.half-width � hj
validity)

D

8̂<̂
:
�
1
1�˛

�
2
h
QN�2

�
.t1�˛

2
.N � 2//; 0I

0; b2/ �QN�2.0; 0I 0; b2/� ; two-sided�
1
1�˛

�
QN�2 ..t1�˛.N � 2//; 0I 0; b2/ ; one-sided

where

b2 D
h.N � 2/

1
2

�.t1�˛
c
.N � 2//N�

1
2 .w1w2/

� 1
2

c D number of sides

and Q�.�; �I �; �/ is Owen’s Q function, defined in the section “Common Notation” on page 7223.

A “quality” confidence interval is both sufficiently narrow (half-width � h) and valid:

Pr(quality) D Pr.half-width � hand validity/

D Pr.half-width � hjvalidity/.1 � ˛/

Analyses in the TWOSAMPLESURVIVAL Statement

Rank Tests for Two Survival Curves (TEST=LOGRANK, TEST=GEHAN, TEST=TARONEWARE)
The method is from Lakatos (1988) and Cantor (1997, pp. 83–92).
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Define the following notation:

Xj .i/ D i th input time point on survival curve for groupj

Sj .i/ D input survivor function value that corresponds toXj .i/

hj .t/ D hazard rate for group j at time t

‰j .t/ D loss hazard rate for group j at time t

�j D exponential hazard rate for group j

R D hazard ratio of group 2 to group 1 � (assumed constant) value of
h2.t/

h1.t/

mj D median survival time for group j

b D number of subintervals per time unit

T D accrual time

� D follow-up time after accrual

Lj D exponential loss rate for group j

XLj D input time point on loss curve for group j

SLj D input survivor function value that corresponds to XLj
mLj D median survival time for group j

ri D rank for i th time point

Each survival curve can be specified in one of several ways.

� For exponential curves:

– a single point .Xj .1/; Sj .1// on the curve

– median survival time

– hazard rate

– hazard ratio (for curve 2, with respect to curve 1)

� For piecewise linear curves with proportional hazards:

– a set of points f.X1.1/; S1.1//; .X1.2/; S1.2//; : : :g (for curve 1)

– hazard ratio (for curve 2, with respect to curve 1)

� For arbitrary piecewise linear curves:

– a set of points f.Xj .1/; Sj .1//; .Xj .2/; Sj .2//; : : :g

A total of M C 1 evenly spaced time points ft0 D 0; t1; t2; : : : ; tM D T C �g are used in calculations, where

M D floor ..T C �/b/
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The hazard function is calculated for each survival curve at each time point. For an exponential curve, the
(constant) hazard is given by one of the following, depending on the input parameterization:

hj .t/ D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�j
�1R
� log. 1

2
/

mj
� log.Sj .1//
Xj .1/

� log.S1.1//
X1.1/

R

For a piecewise linear curve, define the following additional notation:

t�i D largest input time Xsuch that X � ti
tCi D smallest input time Xsuch that X > ti

The hazard is computed by using linear interpolation as follows:

hj .ti / D
Sj .t

�
i / � Sj .t

C
i /�

Sj .t
C
i / � Sj .t

�
i /
� �
ti � t

�
i

�
C Sj .t

�
i /
�
tCi � t

�
i

�
With proportional hazards, the hazard rate of group 2’s curve in terms of the hazard rate of group 1’s curve is

h2.t/ D h1.t/R

Hazard function values f‰j .ti /g for the loss curves are computed in an analogous way from
fLj ; XLj ; SLj ; mLj g.

The expected number at risk Nj .i/ at time i in group j is calculated for each group and time points 0 through
M – 1, as follows:

Nj .0/ D Nwj

Nj .i C 1/ D Nj .i/

�
1 � hj .ti /

�
1

b

�
�‰j .ti /

�
1

b

�
�

�
1

b.T C � � ti /

�
1fti>�g

�

Define �i as the ratio of hazards and �i as the ratio of expected numbers at risk for time ti :

�i D
h2.ti /

h1.ti /

�i D
N2.i/

N1.i/

The expected number of deaths in each subinterval is calculated as follows:

Di D Œh1.ti /N1.i/C h2.ti /N2.i/�

�
1

b

�
The rank values are calculated as follows according to which test statistic is used:

ri D

8<:
1; log-rank
N1.i/CN2.i/; Gehanp
N1.i/CN2.i/; Tarone-Ware



Computational Methods and Formulas F 7277

The distribution of the test statistic is approximated by N.E; 1/ where

E D

PM�1
iD0 Diri

h
�i�i
1C�i�i

�
�i
1C�i

i
qPM�1

iD0 Dir
2
i

�i
.1C�i /2

Note that N
1
2 can be factored out of the mean E, and so it can be expressed equivalently as

E D N
1
2E? D N

1
2

264
PM�1
iD0 D?i r

?
i

h
�i�i
1C�i�i

�
�i
1C�i

i
qPM�1

iD0 D?i r
?
i
2 �i
.1C�i /2

375
where E? is free of N and

D?i D
�
h1.ti /N

?
1 .i/C h2.ti /N

?
2 .i/

� �1
b

�

r?i D

8<:
1; log-rank
N ?
1 .i/CN

?
2 .i/; Gehanp

N ?
1 .i/CN

?
2 .i/; Tarone-Ware

N ?
j .0/ D wj

N ?
j .i C 1/ D N

?
j .i/

�
1 � hj .ti /

�
1

b

�
�‰j .ti /

�
1

b

�
�

�
1

b.T C � � ti /

�
1fti>�g

�

The approximate power is

power D

8̂̂̂<̂
ˆ̂:
ˆ
�
�N

1
2E? � z1�˛

�
; upper one-sided

ˆ
�
N
1
2E? � z1�˛

�
; lower one-sided

ˆ
�
�N

1
2E? � z1�˛

2

�
Cˆ

�
N

1
2E? � z1�˛

2

�
; two-sided

Note that the upper and lower one-sided cases are expressed differently than in other analyses. This is because
E? > 0 corresponds to a higher survival curve in group 1 and thus, by the convention used in PROC power
for two-group analyses, the lower side.

For the one-sided cases, a closed-form inversion of the power equation yield an approximate total sample size

N D

�
zpower C z1�˛

E?

�2
For the two-sided case, the solution for N is obtained by numerically inverting the power equation.

Accrual rates are converted to and from sample sizes according to the equation aj D nj =T , where aj is the
accrual rate for group j.

Expected numbers of events—that is, deaths, whether observed or censored—are converted to and from
sample sizes according to the equation

ej D

(
nj
�
1 � Sj .�/

�
; T D 0

nj

h
1 � 1

T

R T
0 Sj .T C � � t /dt

i
; T > 0
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where ej is the expected number of events in group j. For an exponential curve, the equation simplifies to

ej D

(
nj
�
1 � exp.��j �/

�
; T D 0

nj

h
1 � 1

�jT

�
exp.��j �/ � exp.��j .T C �//

�i
; T > 0

For a piecewise linear curve, first define Kj as the number of time points in the following collection: � ,
T C � , and input time points for group j strictly between � and T C � . Denote the ordered set of these points
as fuj1; : : : ; ujKj g. The survival function values Sj .�/ and Sj .T C �/ are calculated by linear interpolation
between adjacent input time points if they do not coincide with any input time points. Then the equation for
a piecewise linear curve simplifies to

ej D

(
nj
�
1 � Sj .�/

�
; T D 0

nj

h
1 � 1

2T

PKj�1

iD1

�
uj;iC1 � uj i

� �
Sj .uj i /C Sj .uj;iC1/

�i
; T > 0

Analyses in the TWOSAMPLEWILCOXON Statement

Wilcoxon-Mann-Whitney Test for Comparing Two Distributions (TEST=WMW)
The power approximation in this section is applicable to the Wilcoxon-Mann-Whitney (WMW) test as
invoked with the WILCOXON option in the PROC NPAR1WAY statement of the NPAR1WAY procedure.
The approximation is based on O’Brien and Castelloe (2006) and an estimator called 4WMWodds. See
O’Brien and Castelloe (2006) for a definition of 4WMWodds, which need not be derived in detail here for
purposes of explaining the power formula.

Let Y1 and Y2 be independent observations from any two distributions that you want to compare using the
WMW test. For purposes of deriving the asymptotic distribution of 4WMWodds (and consequently the power
computation as well), these distributions must be formulated as ordered categorical (“ordinal”) distributions.

If a distribution is continuous, it can be discretized using a large number of categories with negligible loss
of accuracy. Each nonordinal distribution is divided into b categories, where b is the value of the NBINS
parameter, with breakpoints evenly spaced on the probability scale. That is, each bin contains an equal
probability 1/b for that distribution. Then the breakpoints across both distributions are pooled to form
a collection of C bins (heretofore called “categories”), and the probabilities of bin membership for each
distribution are recalculated. The motivation for this method of binning is to avoid degenerate representations
of the distributions—that is, small handfuls of large probabilities among mostly empty bins—as can be
caused by something like an evenly spaced grid across raw values rather than probabilities.

After the discretization process just mentioned, there are now two ordinal distributions, each with a set of
probabilities across a common set of C ordered categories. For simplicity of notation, assume (without loss
of generality) the response values to be 1; : : : ; C . Represent the conditional probabilities as

Qpij D Prob .Yi D j j group D i/ ; i 2 f1; 2g and j 2 f1; : : : ; C g

and the group allocation weights as

wi D
ni

N
D Prob .group D i/ ; i 2 f1; 2g

The joint probabilities can then be calculated simply as

pij D Prob .group D i; Yi D j / D wi Qpij ; i 2 f1; 2g and j 2 f1; : : : ; C g
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The next step in the power computation is to compute the probabilities that a randomly chosen pair of
observations from the two groups is concordant, discordant, or tied. It is useful to define these probabilities
as functions of the terms Rsij and Rdij , defined as follows, where Y is a random observation drawn from the
joint distribution across groups and categories:

Rsij D Prob .Y is concordant with cell.i; j //C
1

2
Prob .Y is tied with cell.i; j //

D Prob ..group < i and Y < j / or .group > i and Y > j //C
1

2
Prob .group ¤ i and Y D j /

D

2X
gD1

CX
cD1

wg Qpgc

�
I.g�i/.c�j />0 C

1

2
Ig¤i;cDj

�
and

Rdij D Prob .Y is discordant with cell.i; j //C
1

2
Prob .Y is tied with cell.i; j //

D Prob ..group < i and Y > j / or .group > i and Y < j //C
1

2
Prob .group ¤ i and Y D j /

D

2X
gD1

CX
cD1

wg Qpgc

�
I.g�i/.c�j /<0 C

1

2
Ig¤i;cDj

�

For an independent random draw Y1; Y2 from the two distributions,

Pc D Prob .Y1; Y2 concordant/C
1

2
Prob .Y1; Y2 tied/

D

2X
iD1

CX
jD1

wi QpijRsij

and

Pd D Prob .Y1; Y2 discordant/C
1

2
Prob .Y1; Y2 tied/

D

2X
iD1

CX
jD1

wi QpijRdij

Then

WMWodds D
Pc

Pd

Proceeding to compute the theoretical standard error associated with WMWodds (that is, the population
analogue to the sample standard error),

SE.WMWodds/ D
2

Pd

24 2X
iD1

CX
jD1

wi Qpij
�
WMWoddsRdij �Rsij

�2
=N

35 1
2
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Converting to the natural log scale and using the delta method,

SE.log.WMWodds// D
SE.WMWodds/

WMWodds

The next step is to produce a “smoothed” version of the 2 � C cell probabilities that conforms to the null
hypothesis of the Wilcoxon-Mann-Whitney test (in other words, independence in the 2 � C contingency
table of probabilities). Let SEH0.log.WMWodds// denote the theoretical standard error of log.WMWodds/

assuming H0.

Finally, compute the power using the noncentral chi-square and normal distributions:

power D

8̂̂̂̂
<̂
ˆ̂̂:
P
�
Z �

SEH0 .log.WMWodds//

SE.log.WMWodds//
z1�˛ � ı

?N
1
2

�
; upper one-sided

P
�
Z �

SEH0 .log.WMWodds//

SE.log.WMWodds//
z˛ � ı

?N
1
2

�
; lower one-sided

P

�
�2.1; .ı?/2N/ �

h
SEH0 .log.WMWodds//

SE.log.WMWodds//

i2
�21�˛.1/

�
; two-sided

where

ı? D
log.WMWodds/

N
1
2SE.log.WMWodds//

is the primary noncentrality—that is, the “effect size” that quantifies how much the two conjectured distri-
butions differ. Z is a standard normal random variable, �2.df ;nc/ is a noncentral �2 random variable with
degrees of freedom df and noncentrality nc, and N is the total sample size.

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 609 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 608 in Chapter 21,
“Statistical Graphics Using ODS.”

If ODS Graphics is not enabled, then PROC POWER creates traditional graphics.

You can reference every graph produced through ODS Graphics with a name. The names of the graphs that
PROC POWER generates are listed in Table 89.33, along with the required statements and options.
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Table 89.33 Graphs Produced by PROC POWER

ODS Graph Name Plot Description Option

PowerPlot Plot with two of the following three parameters on the
X and Y axes: power, sample size, and effect size

PLOT

PowerAbort Empty plot that shows an error message when a plot
could not be produced

PLOT

Examples: POWER Procedure

Example 89.1: One-Way ANOVA
This example deals with the same situation as in Example 48.1 of Chapter 48, “The GLMPOWER Procedure.”

Hocking (1985, p. 109) describes a study of the effectiveness of electrolytes in reducing lactic acid buildup
for long-distance runners. You are planning a similar study in which you will allocate five different fluids to
runners on a 10-mile course and measure lactic acid buildup immediately after the run. The fluids consist of
water and two commercial electrolyte drinks, EZDure and LactoZap, each prepared at two concentrations,
low (EZD1 and LZ1) and high (EZD2 and LZ2).

You conjecture that the standard deviation of lactic acid measurements given any particular fluid is about
3.75, and that the expected lactic acid values will correspond roughly to those in Table 89.34. You are least
familiar with the LZ1 drink and hence decide to consider a range of reasonable values for that mean.

Table 89.34 Mean Lactic Acid Buildup by Fluid

Water EZD1 EZD2 LZ1 LZ2

35.6 33.7 30.2 29 or 28 25.9

You are interested in four different comparisons, shown in Table 89.35 with appropriate contrast coefficients.

Table 89.35 Planned Comparisons

Contrast Coefficients
Comparison Water EZD1 EZD2 LZ1 LZ2
Water versus electrolytes 4 –1 –1 –1 –1
EZD versus LZ 0 1 1 –1 –1
EZD1 versus EZD2 0 1 –1 0 0
LZ1 versus LZ2 0 0 0 1 –1

For each of these contrasts you want to determine the sample size required to achieve a power of 0.9 for
detecting an effect with magnitude in accord with Table 89.34. You are not yet attempting to choose a single
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sample size for the study, but rather checking the range of sample sizes needed for individual contrasts. You
plan to test each contrast at ˛ D 0:025. In the interests of reducing costs, you will provide twice as many
runners with water as with any of the electrolytes; in other words, you will use a sample size weighting
scheme of 2:1:1:1:1. Use the ONEWAYANOVA statement in the POWER procedure to compute the sample
sizes.

The statements required to perform this analysis are as follows:

proc power;
onewayanova

groupmeans = 35.6 | 33.7 | 30.2 | 29 28 | 25.9
stddev = 3.75
groupweights = (2 1 1 1 1)
alpha = 0.025
ntotal = .
power = 0.9
contrast = (4 -1 -1 -1 -1) (0 1 1 -1 -1)

(0 1 -1 0 0) (0 0 0 1 -1);
run;

The NTOTAL= option with a missing value (.) indicates total sample size as the result parameter. The
GROUPMEANS= option with values from Table 89.34 specifies your conjectures for the means. With only
one mean varying (the LZ1 mean), the “crossed” notation is simpler, showing scenarios for each group mean,
separated by vertical bars (|). For more information about crossed and matched notations for grouped values,
see the section “Specifying Value Lists in Analysis Statements” on page 7216. The contrasts in Table 89.35
are specified with the CONTRAST= option, by using the “matched” notation with each contrast enclosed
in parentheses. The STDDEV=, ALPHA=, and POWER= options specify the error standard deviation,
significance level, and power. The GROUPWEIGHTS= option specifies the weighting schemes. Default
values for the NULLCONTRAST= and SIDES= options specify a two-sided t test of the contrast equal to 0.
See Output 89.1.1 for the results.

Output 89.1.1 Sample Sizes for One-Way ANOVA Contrasts

The POWER Procedure
Single DF Contrast in One-Way ANOVA

The POWER Procedure
Single DF Contrast in One-Way ANOVA

Fixed Scenario Elements

Method Exact

Alpha 0.025

Standard Deviation 3.75

Group Weights 2 1 1 1 1

Nominal Power 0.9

Number of Sides 2

Null Contrast Value 0
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Output 89.1.1 continued

Computed N Total

Index Contrast Means
Actual
Power

N
Total

1 4 -1 -1 -1 -1 35.6 33.7 30.2 29 25.9 0.947 30

2 4 -1 -1 -1 -1 35.6 33.7 30.2 28 25.9 0.901 24

3 0 1 1 -1 -1 35.6 33.7 30.2 29 25.9 0.929 60

4 0 1 1 -1 -1 35.6 33.7 30.2 28 25.9 0.922 48

5 0 1 -1 0 0 35.6 33.7 30.2 29 25.9 0.901 174

6 0 1 -1 0 0 35.6 33.7 30.2 28 25.9 0.901 174

7 0 0 0 1 -1 35.6 33.7 30.2 29 25.9 0.902 222

8 0 0 0 1 -1 35.6 33.7 30.2 28 25.9 0.902 480

The sample sizes in Output 89.1.1 range from 24 for the comparison of water versus electrolytes to 480 for
the comparison of LZ1 versus LZ2, both assuming the smaller LZ1 mean. The sample size for the latter
comparison is relatively large because the small mean difference of 28 – 25.9 = 2.1 is hard to detect.

The Nominal Power of 0.9 in the “Fixed Scenario Elements” table in Output 89.1.1 represents the input
target power, and the Actual Power column in the “Computed N Total” table is the power at the sample size
(N Total) adjusted to achieve the specified sample weighting. Note that all of the sample sizes are rounded
up to multiples of 6 to preserve integer group sizes (since the group weights add up to 6). You can use the
NFRACTIONAL option in the ONEWAYANOVA statement to compute raw fractional sample sizes.

Suppose you want to plot the required sample size for the range of power values from 0.5 to 0.95. First,
define the analysis by specifying the same statements as before, but add the PLOTONLY option to the PROC
POWER statement to disable the nongraphical results. Next, specify the PLOT statement with X=POWER
to request a plot with power on the X axis. (The result parameter, here sample size, is always plotted on
the other axis.) Use the MIN= and MAX= options in the PLOT statement to specify the power range. The
following statements produce the plot shown in Output 89.1.2.

ods graphics on;

proc power plotonly;
onewayanova

groupmeans = 35.6 | 33.7 | 30.2 | 29 28 | 25.9
stddev = 3.75
groupweights = (2 1 1 1 1)
alpha = 0.025
ntotal = .
power = 0.9
contrast = (4 -1 -1 -1 -1) (0 1 1 -1 -1)

(0 1 -1 0 0) (0 0 0 1 -1);
plot x=power min=.5 max=.95;

run;
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Output 89.1.2 Plot of Sample Size versus Power for One-Way ANOVA Contrasts

In Output 89.1.2, the line style identifies the contrast, and the plotting symbol identifies the group means
scenario. The plot shows that the required sample size is highest for the (0 0 0 1 –1) contrast, which
corresponds to the test of LZ1 versus LZ2 that was previously found to require the most resources, in either
cell means scenario.

Note that some of the plotted points in Output 89.1.2 are unevenly spaced. This is because the plotted points
are the rounded sample size results at their corresponding actual power levels. The range specified with
the MIN= and MAX= values in the PLOT statement corresponds to nominal power levels. In some cases,
actual power is substantially higher than nominal power. To obtain plots with evenly spaced points (but with
fractional sample sizes at the computed points), you can use the NFRACTIONAL option in the analysis
statement preceding the PLOT statement.
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Finally, suppose you want to plot the power for the range of sample sizes you will likely consider for the
study (the range of 24 to 480 that achieves 0.9 power for different comparisons). In the ONEWAYANOVA
statement, identify power as the result (POWER=.), and specify NTOTAL=24. The following statements
produce the plot:

proc power plotonly;
onewayanova

groupmeans = 35.6 | 33.7 | 30.2 | 29 28 | 25.9
stddev = 3.75
groupweights = (2 1 1 1 1)
alpha = 0.025
ntotal = 24
power = .
contrast = (4 -1 -1 -1 -1) (0 1 1 -1 -1)

(0 1 -1 0 0) (0 0 0 1 -1);
plot x=n min=24 max=480;

run;

ods graphics off;

The X=N option in the PLOT statement requests a plot with sample size on the X axis.

Note that the value specified with the NTOTAL=24 option is not used. It is overridden in the plot by
the MIN= and MAX= options in the PLOT statement, and the PLOTONLY option in the PROC POWER
statement disables nongraphical results. But the NTOTAL= option (along with a value) is still needed in the
ONEWAYANOVA statement as a placeholder, to identify the desired parameterization for sample size.

Output 89.1.3 shows the resulting plot.
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Output 89.1.3 Plot of Power versus Sample Size for One-Way ANOVA Contrasts

Although Output 89.1.2 and Output 89.1.3 surface essentially the same computations for practical power
ranges, they each provide a different quick visual assessment. Output 89.1.2 reveals the range of required
sample sizes for powers of interest, and Output 89.1.3 reveals the range of achieved powers for sample sizes
of interest.

Example 89.2: The Sawtooth Power Function in Proportion Analyses
For many common statistical analyses, the power curve is monotonically increasing: the more samples
you take, the more power you achieve. However, in statistical analyses of discrete data, such as tests of
proportions, the power curve is often nonmonotonic. A small increase in sample size can result in a decrease
in power, a decrease that is sometimes substantial. The explanation is that the actual significance level (in
other words, the achieved Type I error rate) for discrete tests strays below the target level and varies with
sample size. The power loss from a decrease in the Type I error rate can outweigh the power gain from
an increase in sample size. The example discussed here demonstrates this “sawtooth” phenomenon. For
additional discussion on the topic, see Chernick and Liu (2002).

Suppose you have a new scheduling system for an airline, and you want to determine how many flights you
must observe to have at least an 80% chance of establishing an improvement in the proportion of late arrivals
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on a specific travel route. You will use a one-sided exact binomial proportion test with a null proportion of
30%, the frequency of late arrivals under the previous scheduling system, and a nominal significance level of
˛ = 0.05. Well-supported predictions estimate the new late arrival rate to be about 20%, and you will base
your sample size determination on this assumption.

The POWER procedure does not currently compute exact sample size directly for the exact binomial test.
But you can get an initial estimate by computing the approximate sample size required for a z test. Use
the ONESAMPLEFREQ statement in the POWER procedure with TEST=Z and METHOD=NORMAL to
compute the approximate sample size to achieve a power of 0.8 by using the z test. The following statements
perform the analysis:

proc power;
onesamplefreq test=z method=normal

sides = 1
alpha = 0.05
nullproportion = 0.3
proportion = 0.2
ntotal = .
power = 0.8;

run;

The NTOTAL= option with a missing value (.) indicates sample size as the result parameter. The SIDES=1
option specifies a one-sided test. The ALPHA=, NULLPROPORTION=, and POWER= options specify
the significance level of 0.05, null value of 0.3, and target power of 0.8, respectively. The PROPORTION=
option specifies your conjecture of 0.3 for the true proportion.

Output 89.2.1 Approximate Sample Size for z Test of a Proportion

The POWER Procedure
Z Test for Binomial Proportion

The POWER Procedure
Z Test for Binomial Proportion

Fixed Scenario Elements

Method Normal approximation

Number of Sides 1

Null Proportion 0.3

Alpha 0.05

Binomial Proportion 0.2

Nominal Power 0.8

Variance Estimate Null Variance

Computed N
Total

Actual
Power

N
Total

0.800 119

The results, shown in Output 89.2.1, indicate that you need to observe about N = 119 flights to have an 80%
chance of rejecting the hypothesis of a late arrival proportion of 30% or higher, if the true proportion is 20%,
by using the z test. A similar analysis (Output 89.2.2) reveals an approximate sample size of N = 129 for the
z test with continuity correction, which is performed by using TEST=ADJZ:
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proc power;
onesamplefreq test=adjz method=normal

sides = 1
alpha = 0.05
nullproportion = 0.3
proportion = 0.2
ntotal = .
power = 0.8;

run;

Output 89.2.2 Approximate Sample Size for z Test with Continuity Correction

The POWER Procedure
Z Test for Binomial Proportion with Continuity Adjustment

The POWER Procedure
Z Test for Binomial Proportion with Continuity Adjustment

Fixed Scenario Elements

Method Normal approximation

Number of Sides 1

Null Proportion 0.3

Alpha 0.05

Binomial Proportion 0.2

Nominal Power 0.8

Variance Estimate Null Variance

Computed N
Total

Actual
Power

N
Total

0.801 129

Based on the approximate sample size results, you decide to explore the power of the exact binomial test for
sample sizes between 110 and 140. The following statements produce the plot:

ods graphics on;

proc power plotonly;
onesamplefreq test=exact

sides = 1
alpha = 0.05
nullproportion = 0.3
proportion = 0.2
ntotal = 119
power = .;

plot x=n min=110 max=140 step=1
yopts=(ref=.8) xopts=(ref=119 129);

run;

The TEST=EXACT option in the ONESAMPLEFREQ statement specifies the exact binomial test, and the
missing value (.) for the POWER= option indicates power as the result parameter. The PLOTONLY option in
the PROC POWER statement disables nongraphical output. The PLOT statement with X=N requests a plot
with sample size on the X axis. The MIN= and MAX= options in the PLOT statement specify the sample size
range. The YOPTS=(REF=) and XOPTS=(REF=) options add reference lines to highlight the approximate
sample size results. The STEP=1 option produces a point at each integer sample size. The sample size value
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specified with the NTOTAL= option in the ONESAMPLEFREQ statement is overridden by the MIN= and
MAX= options in the PLOT statement. Output 89.2.3 shows the resulting plot.

Output 89.2.3 Plot of Power versus Sample Size for Exact Binomial Test

Note the sawtooth pattern in Output 89.2.3. Although the power surpasses the target level of 0.8 at N
= 119, it decreases to 0.79 with N = 120 and further to 0.76 with N = 122 before rising again to 0.81
with N = 123. Not until N = 130 does the power stay above the 0.8 target. Thus, a more conservative
sample size recommendation of 130 might be appropriate, depending on the precise goals of the sample size
determination.

In addition to considering alternative sample sizes, you might also want to assess the sensitivity of the power
to inaccuracies in assumptions about the true proportion. The following statements produce a plot including
true proportion values of 0.18 and 0.22. They are identical to the previous statements except for the additional
true proportion values specified with the PROPORTION= option in the ONESAMPLEFREQ statement.
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proc power plotonly;
onesamplefreq test=exact

sides = 1
alpha = 0.05
nullproportion = 0.3
proportion = 0.18 0.2 0.22
ntotal = 119
power = .;

plot x=n min=110 max=140 step=1
yopts=(ref=.8) xopts=(ref=119 129);

run;

Output 89.2.4 shows the resulting plot.

Output 89.2.4 Plot for Assessing Sensitivity to True Proportion Value

The plot reveals a dramatic sensitivity to the true proportion value. For N=119, the power is about 0.92 if the
true proportion is 0.18, and as low as 0.62 if the proportion is 0.22. Note also that the power jumps occur at
the same sample sizes in all three curves; the curves are only shifted and stretched vertically. This is because
spikes and valleys in power curves are invariant to the true proportion value; they are due to changes in the
critical value of the test.
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A closer look at some ancillary output from the analysis sheds light on this property of the sawtooth pattern.
You can add an ODS OUTPUT statement to save the plot content that corresponds to Output 89.2.3 to a data
set:

proc power plotonly;
ods output plotcontent=PlotData;
onesamplefreq test=exact

sides = 1
alpha = 0.05
nullproportion = 0.3
proportion = 0.2
ntotal = 119
power = .;

plot x=n min=110 max=140 step=1
yopts=(ref=.8) xopts=(ref=119 129);

run;

The PlotData data set contains parameter values for each point in the plot. The parameters include underlying
characteristics of the putative test. The following statements print the critical value and actual significance
level along with sample size and power:

proc print data=PlotData;
var NTotal LowerCritVal Alpha Power;

run;

Output 89.2.5 shows the plot data.
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Output 89.2.5 Numerical Content of Plot

Obs NTotal LowerCritVal Alpha Power

1 110 24 0.0356 0.729

2 111 24 0.0313 0.713

3 112 25 0.0446 0.771

4 113 25 0.0395 0.756

5 114 25 0.0349 0.741

6 115 26 0.0490 0.795

7 116 26 0.0435 0.781

8 117 26 0.0386 0.767

9 118 26 0.0341 0.752

10 119 27 0.0478 0.804

11 120 27 0.0425 0.790

12 121 27 0.0377 0.776

13 122 27 0.0334 0.762

14 123 28 0.0465 0.812

15 124 28 0.0414 0.799

16 125 28 0.0368 0.786

17 126 28 0.0327 0.772

18 127 29 0.0453 0.820

19 128 29 0.0404 0.807

20 129 29 0.0359 0.794

21 130 30 0.0493 0.838

22 131 30 0.0441 0.827

23 132 30 0.0394 0.815

24 133 30 0.0351 0.803

25 134 31 0.0480 0.845

26 135 31 0.0429 0.834

27 136 31 0.0384 0.823

28 137 31 0.0342 0.811

29 138 32 0.0466 0.851

30 139 32 0.0418 0.841

31 140 32 0.0374 0.830

Note that whenever the critical value changes, the actual ˛ jumps up to a value close to the nominal ˛ =
0.05, and the power also jumps up. Then while the critical value stays constant, the actual ˛ and power
slowly decrease. The critical value is independent of the true proportion value. So you can achieve a locally
maximal power by choosing a sample size corresponding to a spike on the sawtooth curve, and this choice is
locally optimal regardless of the unknown value of the true proportion. Locally optimal sample sizes in this
case include 115, 119, 123, 127, 130, and 134.

As a point of interest, the power does not always jump sharply and decrease gradually. The shape of the
sawtooth depends on the direction of the test and the location of the null proportion relative to 0.5. For
example, if the direction of the hypothesis in this example is reversed (by switching true and null proportion
values) so that the rejection region is in the upper tail, then the power curve exhibits sharp decreases and
gradual increases. The following statements are similar to those producing the plot in Output 89.2.3 but with
values of the PROPORTION= and NULLPROPORTION= options switched:
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proc power plotonly;
onesamplefreq test=exact

sides = 1
alpha = 0.05
nullproportion = 0.2
proportion = 0.3
ntotal = 119
power = .;

plot x=n min=110 max=140 step=1;
run;

The resulting plot is shown in Output 89.2.6.

Output 89.2.6 Plot of Power versus Sample Size for Another One-sided Test

Finally, two-sided tests can lead to even more irregular power curve shapes, since changes in lower and upper
critical values affect the power in different ways. The following statements produce a plot of power versus
sample size for the scenario of a two-sided test with high alpha and a true proportion close to the null value:



7294 F Chapter 89: The POWER Procedure

proc power plotonly;
onesamplefreq test=exact

sides = 2
alpha = 0.2
nullproportion = 0.1
proportion = 0.09
ntotal = 10
power = .;

plot x=n min=2 max=100 step=1;
run;

ods graphics off;

Output 89.2.7 shows the resulting plot.

Output 89.2.7 Plot of Power versus Sample Size for a Two-Sided Test

Due to the irregular shapes of power curves for proportion tests, the question “Which sample size should I
use?” is often insufficient. A sample size solution produced directly in PROC POWER reveals the smallest
possible sample size to achieve your target power. But as the examples in this section demonstrate, it is
helpful to consult graphs for answers to questions such as the following:
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� Which sample size will guarantee that all higher sample sizes also achieve my target power?

� Given a candidate sample size, can I increase it slightly to achieve locally maximal power, or perhaps
even decrease it and get higher power?

Example 89.3: Simple AB/BA Crossover Designs
Crossover trials are experiments in which each subject is given a sequence of different treatments. They are
especially common in clinical trials for medical studies. The reduction in variability from taking multiple
measurements on a subject allows for more precise treatment comparisons. The simplest such design is the
AB/BA crossover, in which each subject receives each of two treatments in a randomized order.

Under certain simplifying assumptions, you can test the treatment difference in an AB/BA crossover trial by
using either a paired or two-sample t test (or equivalence test, depending on the hypothesis). This example
will demonstrate when and how you can use the PAIREDMEANS statement in PROC POWER to perform
power analyses for AB/BA crossover designs.

Senn (1993, Chapter 3) discusses a study comparing the effects of two bronchodilator medications in treatment
of asthma, by using an AB/BA crossover design. Suppose you want to plan a similar study comparing two
new medications, “Xilodol” and “Brantium.” Half of the patients would be assigned to sequence AB, getting
a dose of Xilodol in the first treatment period, a wash-out period of one week, and then a dose of Brantium in
the second treatment period. The other half would be assigned to sequence BA, following the same schedule
but with the drugs reversed. In each treatment period you would administer the drugs in the morning and then
measure peak expiratory flow (PEF) at the end of the day, with higher PEF representing better lung function.

You conjecture that the mean and standard deviation of PEF are about �A = 330 and �A = 40 for Xilodol
and �B = 310 and �B = 55 for Brantium, and that each pair of measurements on the same subject will have
a correlation of about 0.3. You want to compute the power of both one-sided and two-sided tests of mean
difference, with a significance level of ˛ = 0.01, for a sample size of 100 patients and also plot the power for
a range of 50 to 200 patients. Note that the allocation ratio of patients to the two sequences is irrelevant in
this analysis.

The choice of statistical test depends on which assumptions are reasonable. One possibility is a t test. A
paired or two-sample t test is valid when there is no carryover effect and no interactions between patients,
treatments, and periods. See Senn (1993, Chapter 3) for more details. The choice between a paired or
a two-sample test depends on what you assume about the period effect. If you assume no period effect,
then a paired t test is the appropriate analysis for the design, with the first member of each pair being the
Xilodol measurement (regardless of which sequence the patient belongs to). Otherwise, the two-sample t test
approach is called for, since this analysis adjusts for the period effect by using an extra degree of freedom.

Suppose you assume no period effect. Then you can use the PAIREDMEANS statement in PROC POWER
with the TEST=DIFF option to perform a sample size analysis for the paired t test. Indicate power as the
result parameter by specifying the POWER= option with a missing value (.). Specify the conjectured means
and standard deviations for each drug by using the PAIREDMEANS= and PAIREDSTDDEVS= options and
the correlation by using the CORR= option. Specify both one- and two-sided tests by using the SIDES=
option, the significance level by using the ALPHA= option, and the sample size (in terms of number of
pairs) by using the NPAIRS= option. Generate a plot of power versus sample size by specifying the PLOT
statement with X=N to request a plot with sample size on the X axis. (The result parameter, here power, is
always plotted on the other axis.) Use the MIN= and MAX= options in the PLOT statement to specify the
sample size range (as numbers of pairs).
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The following statements perform the sample size analysis:

ods graphics on;

proc power;
pairedmeans test=diff

pairedmeans = (330 310)
pairedstddevs = (40 55)
corr = 0.3
sides = 1 2
alpha = 0.01
npairs = 100
power = .;

plot x=n min=50 max=200;
run;

ods graphics off;

Default values for the NULLDIFF= and DIST= options specify a null mean difference of 0 and the assumption
of normally distributed data. The output is shown in Output 89.3.1 and Output 89.3.2.

Output 89.3.1 Power for Paired t Analysis of Crossover Design

The POWER Procedure
Paired t Test for Mean Difference

The POWER Procedure
Paired t Test for Mean Difference

Fixed Scenario Elements

Distribution Normal

Method Exact

Alpha 0.01

Mean 1 330

Mean 2 310

Standard Deviation 1 40

Standard Deviation 2 55

Correlation 0.3

Number of Pairs 100

Null Difference 0

Computed Power

Index Sides Power

1 1 0.865

2 2 0.801
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Output 89.3.2 Plot of Power versus Sample Size for Paired t Analysis of Crossover Design

The “Computed Power” table in Output 89.3.1 shows that the power with 100 patients is about 0.8 for the
two-sided test and 0.87 for the one-sided test with the alternative of larger Brantium mean. In Output 89.3.2,
the line style identifies the number of sides of the test. The plotting symbols identify locations of actual
computed powers; the curves are linear interpolations of these points. The plot demonstrates how much
higher the power is in the one-sided test than in the two-sided test for the range of sample sizes.

Suppose now that instead of detecting a difference between Xilodol and Brantium, you want to establish
that they are similar—in particular, that the absolute mean PEF difference is at most 35. You might consider
this goal if, for example, one of the drugs has fewer side effects and if a difference of no more than 35
is considered clinically small. Instead of a standard t test, you would conduct an equivalence test of the
treatment mean difference for the two drugs. You would test the hypothesis that the true difference is less
than –35 or more than 35 against the alternative that the mean difference is between –35 and 35, by using an
additive model and a two one-sided tests (“TOST”) analysis.

Assuming no period effect, you can use the PAIREDMEANS statement with the TEST=EQUIV_DIFF option
to perform a sample size analysis for the paired equivalence test. Indicate power as the result parameter by
specifying the POWER= option with a missing value (.). Use the LOWER= and UPPER= options to specify
the equivalence bounds of –35 and 35. Use the PAIREDMEANS=, PAIREDSTDDEVS=, CORR=, and
ALPHA= options in the same way as in the t test at the beginning of this example to specify the remaining
parameters.
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The following statements perform the sample size analysis:

proc power;
pairedmeans test=equiv_add

lower = -35
upper = 35
pairedmeans = (330 310)
pairedstddevs = (40 55)
corr = 0.3
alpha = 0.01
npairs = 100
power = .;

run;

The default option DIST=NORMAL specifies an assumption of normally distributed data. The output is
shown in Output 89.3.3.

Output 89.3.3 Power for Paired Equivalence Test for Crossover Design

The POWER Procedure
Equivalence Test for Paired Mean Difference

The POWER Procedure
Equivalence Test for Paired Mean Difference

Fixed Scenario Elements

Distribution Normal

Method Exact

Lower Equivalence Bound -35

Upper Equivalence Bound 35

Alpha 0.01

Reference Mean 330

Treatment Mean 310

Standard Deviation 1 40

Standard Deviation 2 55

Correlation 0.3

Number of Pairs 100

Computed
Power

Power

0.598

The power for the paired equivalence test with 100 patients is about 0.6.

Example 89.4: Noninferiority Test with Lognormal Data
The typical goal in noninferiority testing is to conclude that a new treatment or process or product is not
appreciably worse than some standard. This is accomplished by convincingly rejecting a one-sided null
hypothesis that the new treatment is appreciably worse than the standard. When designing such studies,
investigators must define precisely what constitutes “appreciably worse.”
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You can use the POWER procedure for sample size analyses for a variety of noninferiority tests, by specifying
custom, one-sided null hypotheses for common tests. This example illustrates the strategy (often called
Blackwelder’s scheme; Blackwelder 1982) by comparing the means of two independent lognormal samples.
The logic applies to one-sample, two-sample, and paired-sample problems involving normally distributed
measures and proportions.

Suppose you are designing a study hoping to show that a new (less expensive) manufacturing process does
not produce appreciably more pollution than the current process. Quantifying “appreciably worse” as 10%,
you seek to show that the mean pollutant level from the new process is less than 110% of that from the current
process. In standard hypothesis testing notation, you seek to reject

H0W
�new

�current
� 1:10

in favor of

HAW
�new

�current
< 1:10

This is described graphically in Figure 89.8. Mean ratios below 100% are better levels for the new process; a
ratio of 100% indicates absolute equivalence; ratios of 100–110% are “tolerably” worse; and ratios exceeding
110% are appreciably worse.

Figure 89.8 Hypotheses for the Pollutant Study

An appropriate test for this situation is the common two-group t test on log-transformed data. The hypotheses
become

H0W log .�new/ � log .�current/ � log.1:10/
HAW log .�new/ � log .�current/ < log.1:10/

Measurements of the pollutant level will be taken by using laboratory models of the two processes and will
be treated as independent lognormal observations with a coefficient of variation (�=�) between 0.5 and 0.6
for both processes. You will end up with 300 measurements for the current process and 180 for the new one.
It is important to avoid a Type I error here, so you set the Type I error rate to 0.01. Your theoretical work
suggests that the new process will actually reduce the pollutant by about 10% (to 90% of current), but you
need to compute and graph the power of the study if the new levels are actually between 70% and 120% of
current levels.

Implement the sample size analysis by using the TWOSAMPLEMEANS statement in PROC POWER
with the TEST=RATIO option. Indicate power as the result parameter by specifying the POWER= option
with a missing value (.). Specify a series of scenarios for the mean ratio between 0.7 and 1.2 by using
the MEANRATIO= option. Use the NULLRATIO= option to specify the null mean ratio of 1.10. Specify
SIDES=L to indicate a one-sided test with the alternative hypothesis stating that the mean ratio is lower than
the null value. Specify the significance level, scenarios for the coefficient of variation, and the group sample
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sizes by using the ALPHA=, CV=, and GROUPNS= options. Generate a plot of power versus mean ratio by
specifying the PLOT statement with the X=EFFECT option to request a plot with mean ratio on the X axis.
(The result parameter, here power, is always plotted on the other axis.) Use the STEP= option in the PLOT
statement to specify an interval of 0.05 between computed points in the plot.

The following statements perform the desired analysis:

ods graphics on;

proc power;
twosamplemeans test=ratio

meanratio = 0.7 to 1.2 by 0.1
nullratio = 1.10
sides = L
alpha = 0.01
cv = 0.5 0.6
groupns = (300 180)
power = .;

plot x=effect step=0.05;
run;

ods graphics off;

Note the use of SIDES=L, which forces computations for cases that need a rejection region that is opposite to
the one providing the most one-tailed power; in this case, it is the lower tail. Such cases will show power
that is less than the prescribed Type I error rate. The default option DIST=LOGNORMAL specifies the
assumption of lognormally distributed data. The default MIN= and MAX= options in the plot statement
specify an X axis range identical to the effect size range in the TWOSAMPLEMEANS statement (mean
ratios between 0.7 and 1.2).

Output 89.4.1 and Output 89.4.2 show the results.

Output 89.4.1 Power for Noninferiority Test of Ratio

The POWER Procedure
Two-Sample t Test for Mean Ratio

The POWER Procedure
Two-Sample t Test for Mean Ratio

Fixed Scenario Elements

Distribution Lognormal

Method Exact

Number of Sides L

Null Geometric Mean Ratio 1.1

Alpha 0.01

Group 1 Sample Size 300

Group 2 Sample Size 180
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Output 89.4.1 continued

Computed Power

Index

Geo
Mean
Ratio CV Power

1 0.7 0.5 >.999

2 0.7 0.6 >.999

3 0.8 0.5 >.999

4 0.8 0.6 >.999

5 0.9 0.5 0.985

6 0.9 0.6 0.933

7 1.0 0.5 0.424

8 1.0 0.6 0.306

9 1.1 0.5 0.010

10 1.1 0.6 0.010

11 1.2 0.5 <.001

12 1.2 0.6 <.001

Output 89.4.2 Plot of Power versus Mean Ratio for Noninferiority Test
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The “Computed Power” table in Output 89.4.1 shows that power exceeds 0.90 if the true mean ratio is
90% or less, as surmised. But power is unacceptably low (0.31–0.42) if the processes happen to be truly
equivalent. Note that the power is identical to the alpha level (0.01) if the true mean ratio is 1.10 and below
0.01 if the true mean ratio is appreciably worse (>110%). In Output 89.4.2, the line style identifies the
coefficient of variation. The plotting symbols identify locations of actual computed powers; the curves are
linear interpolations of these points.

Example 89.5: Multiple Regression and Correlation
You are working with a team of preventive cardiologists investigating whether elevated serum homocysteine
levels are linked to atherosclerosis (plaque buildup) in coronary arteries. The planned analysis is an ordinary
least squares regression to assess the relationship between total homocysteine level (tHcy) and a plaque
burden index (PBI), adjusting for six other variables: age, gender, plasma levels of folate, vitamin B6, vitamin
B12, and a serum cholesterol index. You will regress PBI on tHcy and the six other predictors (plus the
intercept) and use a Type III F test to assess whether tHcy is a significant predictor after adjusting for the
others. You wonder whether 100 subjects will provide adequate statistical power.

This is a correlational study at a single time. Subjects will be screened so that about half will have had a
heart problem. All eight variables will be measured during one visit. Most clinicians are familiar with simple
correlations between two variables, so you decide to pose the statistical problem in terms of estimating and
testing the partial correlation between X1 = tHcy and Y = PBI, controlling for the six other predictor variables
(RYX1jX�1). This greatly simplifies matters, especially the elicitation of the conjectured effect.

You use partial regression plots like that shown in Figure 89.9 to teach the team that the partial correlation
between PBI and tHcy is the correlation of two sets of residuals obtained from ordinary regression models,
one from regressing PBI on the six covariates and the other from regressing tHcy on the same covariates.
Thus each subject has “expected” tHcy and PBI values based on the six covariates. The cardiologists believe
that subjects whose tHcy is relatively higher than expected will also have a PBI that is relatively higher than
expected. The partial correlation quantifies that adjusted association just as a standard simple correlation
does with the unadjusted linear association between two variables.

Figure 89.9 Partial Regression Plot
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Based on previously published studies of various coronary risk factors and after viewing a set of scatterplots
showing various correlations, the team surmises that the true partial correlation is likely to be at least 0.35.

You want to compute the statistical power for a sample size of N = 100 by using ˛ = 0.05. You also want to
plot power for sample sizes between 50 and 150. Use the MULTREG statement to compute the power and the
PLOT statement to produce the graph. Since the predictors are observed rather than fixed in advanced, and a
joint multivariate normal assumption seems tenable, use MODEL=RANDOM. The following statements
perform the power analysis:

ods graphics on;

proc power;
multreg

model = random
nfullpredictors = 7
ntestpredictors = 1
partialcorr = 0.35
ntotal = 100
power = .;

plot x=n min=50 max=150;
run;

ods graphics off;

The POWER=. option identifies power as the parameter to compute. The NFULLPREDICTORS= option
specifies seven total predictors (not including the intercept), and the NTESTPREDICTORS= option indicates
that one of those predictors is being tested. The PARTIALCORR= and NTOTAL= options specify the partial
correlation and sample size, respectively. The default value for the ALPHA= option sets the significance
level to 0.05. The X=N option in the plot statement requests a plot of sample size on the X axis, and the
MIN= and MAX= options specify the sample size range.

Output 89.5.1 shows the output, and Output 89.5.2 shows the plot.

Output 89.5.1 Power Analysis for Multiple Regression

The POWER Procedure
Type III F Test in Multiple Regression

The POWER Procedure
Type III F Test in Multiple Regression

Fixed Scenario Elements

Method Exact

Model Random X

Number of Predictors in Full Model 7

Number of Test Predictors 1

Partial Correlation 0.35

Total Sample Size 100

Alpha 0.05

Computed
Power

Power

0.939



7304 F Chapter 89: The POWER Procedure

Output 89.5.2 Plot of Power versus Sample Size for Multiple Regression

For the sample size N = 100, the study is almost balanced with respect to Type I and Type II error rates, with
˛ = 0.05 and ˇ = 1 – 0.937 = 0.063. The study thus seems well designed at this sample size.

Now suppose that in a follow-up meeting with the cardiologists, you discover that their specific intent is to
demonstrate that the (partial) correlation between PBI and tHcy is greater than 0.2. You suggest changing the
planned data analysis to a one-sided Fisher’s z test with a null correlation of 0.2. The following statements
perform a power analysis for this test:

proc power;
onecorr dist=fisherz

npvars = 6
corr = 0.35
nullcorr = 0.2
sides = 1
ntotal = 100
power = .;

run;

The DIST=FISHERZ option in the ONECORR statement specifies Fisher’s z test. The NPARTIALVARS=
option specifies that six additional variables are adjusted for in the partial correlation. The CORR= option
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specifies the conjectured correlation of 0.35, and the NULLCORR= option indicates the null value of 0.2.
The SIDES= option specifies a one-sided test.

Output 89.5.3 shows the output.

Output 89.5.3 Power Analysis for Fisher’s z Test

The POWER Procedure
Fisher's z Test for Pearson Correlation

The POWER Procedure
Fisher's z Test for Pearson Correlation

Fixed Scenario Elements

Distribution Fisher's z transformation of r

Method Normal approximation

Number of Sides 1

Null Correlation 0.2

Number of Variables Partialled Out 6

Correlation 0.35

Total Sample Size 100

Nominal Alpha 0.05

Computed
Power

Actual
Alpha Power

0.05 0.466

The power for Fisher’s z test is less than 50%, the decrease being mostly due to the smaller effect size (relative
to the null value). When asked for a recommendation for a new sample size goal, you compute the required
sample size to achieve a power of 0.95 (to balance Type I and Type II errors) and 0.85 (a threshold deemed to
be minimally acceptable to the team). The following statements perform the sample size determination:

proc power;
onecorr dist=fisherz

npvars = 6
corr = 0.35
nullcorr = 0.2
sides = 1
ntotal = .
power = 0.85 0.95;

run;

The NTOTAL=. option identifies sample size as the parameter to compute, and the POWER= option specifies
the target powers.
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Output 89.5.4 Sample Size Determination for Fisher’s z Test

The POWER Procedure
Fisher's z Test for Pearson Correlation

The POWER Procedure
Fisher's z Test for Pearson Correlation

Fixed Scenario Elements

Distribution Fisher's z transformation of r

Method Normal approximation

Number of Sides 1

Null Correlation 0.2

Number of Variables Partialled Out 6

Correlation 0.35

Nominal Alpha 0.05

Computed N Total

Index
Nominal

Power
Actual
Alpha

Actual
Power

N
Total

1 0.85 0.05 0.850 280

2 0.95 0.05 0.950 417

The results in Output 89.5.4 reveal a required sample size of 417 to achieve a power of 0.95 and a required
sample size of 280 to achieve a power of 0.85.

Example 89.6: Comparing Two Survival Curves
You are consulting for a clinical research group planning a trial to compare survival rates for proposed and
standard cancer treatments. The planned data analysis is a log-rank test to nonparametrically compare the
overall survival curves for the two treatments. Your goal is to determine an appropriate sample size to achieve
a power of 0.8 for a two-sided test with ˛ = 0.05 by using a balanced design.

The survival curve for patients on the standard treatment is well known to be approximately exponential with
a median survival time of five years. The research group conjectures that the new proposed treatment will
yield a (nonexponential) survival curve similar to the dashed line in Figure 89.6.1.

Patients will be accrued uniformly over two years and then followed for an additional three years past the
accrual period. Some loss to follow-up is expected, with roughly exponential rates that would result in about
50% loss with the standard treatment within 10 years. The loss to follow-up with the proposed treatment is
more difficult to predict, but 50% loss would be expected to occur sometime between years 5 and 20.
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Output 89.6.1 Survival Curves

Use the TWOSAMPLESURVIVAL statement with the TEST=LOGRANK option to compute the required
sample size for the log-rank test. The following statements perform the analysis:

proc power;
twosamplesurvival test=logrank

curve("Standard") = 5 : 0.5
curve("Proposed") = (1 to 5 by 1):(0.95 0.9 0.75 0.7 0.6)
groupsurvival = "Standard" | "Proposed"
accrualtime = 2
followuptime = 3
groupmedlosstimes = 10 | 20 5
power = 0.8
npergroup = .;

run;

The CURVE= option defines the two survival curves. The “Standard” curve has only one point, specifying an
exponential form with a survival probability of 0.5 at year 5. The “Proposed” curve is a piecewise linear
curve defined by the five points shown in Figure 89.6.1. The GROUPSURVIVAL= option assigns the survival
curves to the two groups, and the ACCRUALTIME= and FOLLOWUPTIME= options specify the accrual and
follow-up times. The GROUPMEDLOSSTIMES= option specifies the years at which 50% loss is expected
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to occur. The POWER= option specifies the target power, and the NPERGROUP=. option identifies sample
size per group as the parameter to compute. Default values for the SIDES= and ALPHA= options specify a
two-sided test with ˛ = 0.05.

Output 89.6.2 shows the results.

Output 89.6.2 Sample Size Determination for Log-Rank Test

The POWER Procedure
Log-Rank Test for Two Survival Curves

The POWER Procedure
Log-Rank Test for Two Survival Curves

Fixed Scenario Elements

Method Lakatos normal approximation

Accrual Time 2

Follow-up Time 3

Group 1 Survival Curve Standard

Form of Survival Curve 1 Exponential

Group 2 Survival Curve Proposed

Form of Survival Curve 2 Piecewise Linear

Group 1 Median Loss Time 10

Nominal Power 0.8

Number of Sides 2

Number of Time Sub-Intervals 12

Alpha 0.05

Computed N per Group

Index

Median
Loss

Time 2
Actual
Power

N per
Group

1 20 0.800 228

2 5 0.801 234

The required sample size per group to achieve a power of 0.8 is 228 if the median loss time is 20 years for
the proposed treatment. Only six more patients are required in each group if the median loss time is as short
as five years.

Example 89.7: Confidence Interval Precision
An investment firm has hired you to help plan a study to estimate the success of a new investment strategy
called IntuiVest. The study involves complex simulations of market conditions over time, and it tracks the
balance of a hypothetical brokerage account starting with $50,000. Each simulation is very expensive in
terms of computing time. You are asked to determine an appropriate number of simulations to estimate
the average change in the account balance at the end of three years. The goal is to have a 95% chance of
obtaining a 90% confidence interval whose half-width is at most $1,000. That is, the firm wants to have
a 95% chance of being able to correctly claim at the end of the study that “Our research shows with 90%
confidence that IntuiVest yields a profit of $X +/– $1,000 at the end of three years on an initial investment of
$50,000 (under simulated market conditions).”
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The probability of achieving the desired precision (that is, a small interval width) can be calculated either
unconditionally or conditionally given that the true mean is captured by the interval. You decide to use the
conditional form, considering two of its advantages:

� The conditional probability is usually lower than the unconditional probability for the same sample
size, meaning that the conditional form is generally conservative.

� The overall probability of achieving the desired precision and capturing the true mean is easily
computed as the product of the half-width probability and the confidence level. In this case, the overall
probability is 0.95 � 0.9 = 0.855.

Based on some initial simulations, you expect a standard deviation between $25,000 and $45,000 for the
ending account balance. You will consider both of these values in the sample size analysis.

As mentioned in the section “Overview of Power Concepts” on page 7213, an analysis of confidence interval
precision is analogous to a traditional power analysis, with “CI Half-Width” taking the place of effect size
and “Prob(Width)” taking the place of power. In this example, the target CI Half-Width is 1000, and the
desired Prob(Width) is 0.95.

In addition to computing sample sizes for a half-width of $1,000, you are asked to plot the required number of
simulations for a range of half-widths between $500 and $2,000. Use the ONESAMPLEMEANS statement
with the CI=T option to implement the sample size determination. The following statements perform the
analysis:

ods graphics on;

proc power;
onesamplemeans ci=t

alpha = 0.1
halfwidth = 1000
stddev = 25000 45000
probwidth = 0.95
ntotal = .;

plot x=effect min=500 max=2000;
run;

ods graphics off;

The NTOTAL=. option identifies sample size as the parameter to compute. The ALPHA=0.1 option specifies
a confidence level of 1 – ˛ = 0.9. The HALFWIDTH= option specifies the target half-width, and the
STDDEV= option specifies the conjectured standard deviation values. The PROBWIDTH= option specifies
the desired probability of achieving the target precision. The default value PROBTYPE=CONDITIONAL
specifies that this probability is conditional on the true mean being captured by the interval. The default of
SIDES=2 indicates a two-sided interval.

Output 89.7.1 shows the output, and Output 89.7.2 shows the plot.
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Output 89.7.1 Sample Size Determination for Confidence Interval Precision

The POWER Procedure
Confidence Interval for Mean

The POWER Procedure
Confidence Interval for Mean

Fixed Scenario Elements

Distribution Normal

Method Exact

Alpha 0.1

CI Half-Width 1000

Nominal Prob(Width) 0.95

Number of Sides 2

Prob Type Conditional

Computed N Total

Index
Std
Dev

Actual
Prob(Width)

N
Total

1 25000 0.951 1788

2 45000 0.950 5652

Output 89.7.2 Plot of Sample Size versus Confidence Interval Half-Width
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The number of simulations required in order to have a 95% chance of obtaining a half-width of at most 1000
is between 1788 and 5652, depending on the standard deviation. The plot reveals that more than 20,000
simulations would be required for a half-width of 500, assuming the higher standard deviation.

Example 89.8: Customizing Plots
This example demonstrates various ways you can modify and enhance plots:

� assigning analysis parameters to axes

� fine-tuning a sample size axis

� adding reference lines

� linking plot features to analysis parameters

� choosing key (legend) styles

� modifying symbol locations

The example plots are all based on a sample size analysis for a two-sample t test of group mean difference.
You start by computing the sample size required to achieve a power of 0.9 by using a two-sided test with ˛ =
0.05, assuming the first mean is 12, the second mean is either 15 or 18, and the standard deviation is either 7
or 9.

Use the TWOSAMPLEMEANS statement with the TEST=DIFF option to compute the required sample sizes.
Indicate total sample size as the result parameter by supplying a missing value (.) with the NTOTAL= option.
Use the GROUPMEANS=, STDDEV=, and POWER= options to specify values of the other parameters. The
following statements perform the sample size computations:

proc power;
twosamplemeans test=diff

groupmeans = 12 | 15 18
stddev = 7 9
power = 0.9
ntotal = .;

run;

Default values for the NULLDIFF=, SIDES=, GROUPWEIGHTS=, and DIST= options specify a null mean
difference of 0, two-sided test, balanced design, and assumption of normally distributed data, respectively.

Output 89.8.1 shows that the required sample size ranges from 60 to 382, depending on the unknown standard
deviation and second mean.
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Output 89.8.1 Computed Sample Sizes

The POWER Procedure
Two-Sample t Test for Mean Difference

The POWER Procedure
Two-Sample t Test for Mean Difference

Fixed Scenario
Elements

Distribution Normal

Method Exact

Group 1 Mean 12

Nominal Power 0.9

Number of Sides 2

Null Difference 0

Alpha 0.05

Group 1 Weight 1

Group 2 Weight 1

Computed N Total

Index Mean2
Std
Dev

Actual
Power

N
Total

1 15 7 0.902 232

2 15 9 0.901 382

3 18 7 0.904 60

4 18 9 0.904 98

Assigning Analysis Parameters to Axes

Use the PLOT statement to produce plots for all power and sample size analyses in PROC POWER. For
the sample size analysis described at the beginning of this example, suppose you want to plot the required
sample size on the Y axis against a range of powers between 0.5 and 0.95 on the X axis. The X= and Y=
options specify which parameter to plot against the result and which axis to assign to this parameter. You
can use either the X= or the Y= option, but not both. Use the X=POWER option in the PLOT statement to
request a plot with power on the X axis. The result parameter, here total sample size, is always plotted on the
other axis. Use the MIN= and MAX= options to specify the range of the axis indicated with either the X= or
the Y= option. Here, specify MIN=0.5 and MAX=0.95 to specify the power range. The following statements
produce the plot:

ods graphics on;

proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 15 18
stddev = 7 9
power = 0.9
ntotal = .;

plot x=power min=0.5 max=0.95;
run;

Note that the value (0.9) of the POWER= option in the TWOSAMPLEMEANS statement is only a placeholder
when the PLOTONLY option is used and both the MIN= and MAX= options are used, because the values of
the MIN= and MAX= options override the value of 0.9. But the POWER= option itself is still required in the
TWOSAMPLEMEANS statement, to provide a complete specification of the sample size analysis.
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The resulting plot is shown in Output 89.8.2.

Output 89.8.2 Plot of Sample Size versus Power

The line style identifies the group means scenario, and the plotting symbol identifies the standard deviation
scenario. The locations of plotting symbols indicate computed sample sizes; the curves are linear interpo-
lations of these points. By default, each curve consists of approximately 20 computed points (sometimes
slightly more or less, depending on the analysis).

If you would rather plot power on the Y axis versus sample size on the X axis, you have two general strategies
to choose from. One strategy is to use the Y= option instead of the X= option in the PLOT statement:

plot y=power min=0.5 max=0.95;
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Output 89.8.3 Plot of Power versus Sample Size using First Strategy

Note that the resulting plot (Output 89.8.3) is essentially a mirror image of Output 89.8.2. The axis ranges
are set such that each curve in Output 89.8.3 contains similar values of Y instead of X. Each plotted point
represents the computed value of the X axis at the input value of the Y axis.

A second strategy for plotting power versus sample size (when originally solving for sample size) is to invert
the analysis and base the plot on computed power for a given range of sample sizes. This strategy works
well for monotonic power curves (as is the case for the t test and most other continuous analyses). It is
advantageous in the sense of preserving the traditional role of the Y axis as the computed parameter. A
common way to implement this strategy is as follows:

� Determine the range of sample sizes sufficient to cover at the desired power range for all curves (where
each “curve” represents a scenario for standard deviation and second group mean).

� Use this range for the X axis of a plot.

To determine the required sample sizes for target powers of 0.5 and 0.95, change the values in the POWER=
option as follows to reflect this range:
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proc power;
twosamplemeans test=diff

groupmeans = 12 | 15 18
stddev = 7 9
power = 0.5 0.95
ntotal = .;

run;

Output 89.8.4 reveals that a sample size range of 24 to 470 is approximately sufficient to cover the desired
power range of 0.5 to 0.95 for all curves (“approximately” because the actual power at the rounded sample
size of 24 is slightly higher than the nominal power of 0.5).

Output 89.8.4 Computed Sample Sizes

The POWER Procedure
Two-Sample t Test for Mean Difference

The POWER Procedure
Two-Sample t Test for Mean Difference

Fixed Scenario
Elements

Distribution Normal

Method Exact

Group 1 Mean 12

Number of Sides 2

Null Difference 0

Alpha 0.05

Group 1 Weight 1

Group 2 Weight 1

Computed N Total

Index Mean2
Std
Dev

Nominal
Power

Actual
Power

N
Total

1 15 7 0.50 0.502 86

2 15 7 0.95 0.951 286

3 15 9 0.50 0.505 142

4 15 9 0.95 0.950 470

5 18 7 0.50 0.519 24

6 18 7 0.95 0.953 74

7 18 9 0.50 0.516 38

8 18 9 0.95 0.952 120

To plot power on the Y axis for sample sizes between 20 and 500, use the X=N option in the PLOT statement
with MIN=20 and MAX=500:

proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 15 18
stddev = 7 9
power = .
ntotal = 200;

plot x=n min=20 max=500;
run;
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Each curve in the resulting plot in Output 89.8.5 covers at least a power range of 0.5 to 0.95.

Output 89.8.5 Plot of Power versus Sample Size Using Second Strategy

Finally, suppose you want to produce a plot of sample size versus effect size for a power of 0.9. In this case,
the “effect size” is defined to be the mean difference. You need to reparameterize the analysis by using the
MEANDIFF= option instead of the GROUPMEANS= option to produce a plot, since each plot axis must be
represented by a scalar parameter. Use the X=EFFECT option in the PLOT statement to assign the mean
difference to the X axis. The following statements produce a plot of required sample size to detect mean
differences between 3 and 6:

proc power plotonly;
twosamplemeans test=diff

meandiff = 3 6
stddev = 7 9
power = 0.9
ntotal = .;

plot x=effect min=3 max=6;
run;

The resulting plot Output 89.8.6 shows how the required sample size decreases with increasing mean
difference.
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Output 89.8.6 Plot of Sample Size versus Mean Difference

Fine-Tuning a Sample Size Axis

Consider the following plot request for a sample size analysis similar to the one in Output 89.8.1 but with
only a single scenario, and with unbalanced sample size allocation of 2:1:

proc power plotonly;
ods output plotcontent=PlotData;
twosamplemeans test=diff

groupmeans = 12 | 18
stddev = 7
groupweights = 2 | 1
power = .
ntotal = 20;

plot x=n min=20 max=50 npoints=20;
run;

The MIN=, MAX=, and NPOINTS= options in the PLOT statement request a plot with 20 points between 20
and 50. But the resulting plot (Output 89.8.7) appears to have only 11 points, and they range from 18 to 48.
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Output 89.8.7 Plot with Overlapping Points

The reason that this plot has fewer points than usual is due to the rounding of sample sizes. If you do not use
the NFRACTIONAL option in the analysis statement (here, the TWOSAMPLEMEANS statement), then the
set of sample size points determined by the MIN=, MAX=, NPOINTS=, and STEP= options in the PLOT
statement can be rounded to satisfy the allocation weights. In this case, they are rounded down to the nearest
multiples of 3 (the sum of the weights), and many of the points overlap. To see the overlap, you can print the
NominalNTotal (unadjusted) and NTotal (rounded) variables in the PlotContent ODS object (here saved to a
data set called PlotData):

proc print data=PlotData;
var NominalNTotal NTotal;

run;

The output is shown in Output 89.8.8.
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Output 89.8.8 Sample Sizes

Obs NominalNTotal NTotal

1 18.0 18

2 19.6 18

3 21.2 21

4 22.7 21

5 24.3 24

6 25.9 24

7 27.5 27

8 29.1 27

9 30.6 30

10 32.2 30

11 33.8 33

12 35.4 33

13 36.9 36

14 38.5 36

15 40.1 39

16 41.7 39

17 43.3 42

18 44.8 42

19 46.4 45

20 48.0 48

Besides overlapping of sample size points, another peculiarity that might occur without the NFRACTIONAL
option is unequal spacing—for example, in the plot in Output 89.8.9, created with the following statements:

proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 18
stddev = 7
groupweights = 2 | 1
power = .
ntotal = 20;

plot x=n min=20 max=50 npoints=5;
run;
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Output 89.8.9 Plot with Unequally Spaced Points

If you want to guarantee evenly spaced, nonoverlapping sample size points in your plots, you can either
(1) use the NFRACTIONAL option in the analysis statement preceding the PLOT statement or (2) use the
STEP= option and provide values for the MIN=, MAX=, and STEP= options in the PLOT statement that
are multiples of the sum of the allocation weights. Note that this sum is simply 1 for one-sample and paired
designs and 2 for balanced two-sample designs. So any integer step value works well for one-sample and
paired designs, and any even step value works well for balanced two-sample designs. Both of these strategies
will avoid rounding adjustments.

The following statements implement the first strategy to create the plot in Output 89.8.10, by using the
NFRACTIONAL option in the TWOSAMPLEMEANS statement:

proc power plotonly;
twosamplemeans test=diff

nfractional
groupmeans = 12 | 18
stddev = 7
groupweights = 2 | 1
power = .
ntotal = 20;

plot x=n min=20 max=50 npoints=20;
run;
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Output 89.8.10 Plot with Fractional Sample Sizes

To implement the second strategy, use multiples of 3 for the STEP=, MIN=, and MAX= options in the
PLOT statement (because the sum of the allocation weights is 2 + 1 = 3). The following statements use
STEP=3, MIN=18, and MAX=48 to create a plot that looks identical to the plot in Output 89.8.7 but suffers
no overlapping of points:

proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 18
stddev = 7
groupweights = 2 | 1
power = .
ntotal = 20;

plot x=n min=18 max=48 step=3;
run;

Adding Reference Lines

Suppose you want to add reference lines to highlight power=0.8 and power=0.9 on the plot in Output 89.8.5.
You can add simple reference lines by using the YOPTS= option and REF= suboption in the PLOT statement
to produce Output 89.8.11, with the following statements:
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proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 15 18
stddev = 7 9
power = .
ntotal = 100;

plot x=n min=20 max=500
yopts=(ref=0.8 0.9);

run;

Output 89.8.11 Plot with Simple Reference Lines on Y Axis

Or you can specify CROSSREF=YES to add reference lines that intersect each curve and cross over to the
other axis:

plot x=n min=20 max=500
yopts=(ref=0.8 0.9 crossref=yes);

The resulting plot is shown in Output 89.8.12.
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Output 89.8.12 Plot with CROSSREF=YES Style Reference Lines from Y Axis

You can also add reference lines for the X axis by using the XOPTS= option instead of the YOPTS= option.
For example, the following PLOT statement produces Output 89.8.13, which has crossing reference lines
highlighting the sample size of 100:

plot x=n min=20 max=500
xopts=(ref=100 crossref=yes);

Note that the values that label the reference lines at the X axis in Output 89.8.12 and at the Y axis in Out-
put 89.8.13 are linearly interpolated from two neighboring points on the curves. Thus they might not exactly
match corresponding values that are computed directly from the methods in the section “Computational
Methods and Formulas” on page 7222—that is, computed by PROC POWER in the absence of a PLOT
statement. The two ways of computing these values generally differ by a negligible amount.
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Output 89.8.13 Plot with CROSSREF=YES Style Reference Lines from X Axis

Linking Plot Features to Analysis Parameters

You can use the VARY option in the PLOT statement to specify which of the following features you want to
associate with analysis parameters.

� line style

� plotting symbol

� color

� panel

You can specify mappings between each of these features and one or more analysis parameters, or you can
simply choose a subset of these features to use (and rely on default settings to associate these features with
multiple-valued analysis parameters).
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Suppose you supplement the sample size analysis in Output 89.8.5 to include three values of alpha, by using
the following statements:

proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 15 18
stddev = 7 9
alpha = 0.01 0.025 0.1
power = .
ntotal = 100;

plot x=n min=20 max=500;
run;

The defaults for the VARY option in the PLOT statement specify line style varying by the ALPHA= parameter,
plotting symbol varying by the GROUPMEANS= parameter, panel varying by the STDDEV= parameter, and
color remaining constant. The resulting plot, consisting of two panels, is shown in Output 89.8.14.

Output 89.8.14 Plot with Default VARY Settings
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Output 89.8.14 continued

Suppose you want to produce a plot with only one panel that varies color in addition to line style and plotting
symbol. Include the LINESTYLE, SYMBOL, and COLOR keywords in the VARY option in the PLOT
statement, as follows, to produce the plot in Output 89.8.15:

plot x=n min=20 max=500
vary (linestyle, symbol, color);
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Output 89.8.15 Plot with Varying Color Instead of Panel

Finally, suppose you want to specify which features are used and which analysis parameters they are linked
to. The following PLOT statement produces a two-panel plot (shown in Output 89.8.16) in which line style
varies by standard deviation, plotting symbol varies by both alpha and sides, and panel varies by means:

plot x=n min=20 max=500
vary (linestyle by stddev,

symbol by alpha sides,
panel by groupmeans);
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Output 89.8.16 Plot with Features Explicitly Linked to Parameters
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Output 89.8.16 continued

Choosing Key (Legend) Styles

The default style for the key (or “legend”) is one that displays the association between levels of features and
levels of analysis parameters, located below the X axis. For example, Output 89.8.5 demonstrates this style
of key.

You can reproduce Output 89.8.5 with the same key but a different location, inside the plotting region, by
using the POS=INSET option within the KEY=BYFEATURE option in the PLOT statement. The following
statements product the plot in Output 89.8.17:

proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 15 18
stddev = 7 9
power = .
ntotal = 200;

plot x=n min=20 max=500
key = byfeature(pos=inset);

run;
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Output 89.8.17 Plot with a By-Feature Key inside the Plotting Region

Alternatively, you can specify a key that identifies each individual curve separately by number by using the
KEY=BYCURVE option in the PLOT statement:

plot x=n min=20 max=500
key = bycurve;

The resulting plot is shown in Output 89.8.18.
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Output 89.8.18 Plot with a Numbered By-Curve Key

Use the NUMBERS=OFF option within the KEY=BYCURVE option to specify a nonnumbered key that
identifies curves with samples of line styles, symbols, and colors:

plot x=n min=20 max=500
key = bycurve(numbers=off pos=inset);

The POS=INSET suboption places the key within the plotting region. The resulting plot is shown in
Output 89.8.19.
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Output 89.8.19 Plot with a Nonnumbered By-Curve Key

Finally, you can attach labels directly to curves with the KEY=ONCURVES option. The following PLOT
statement produces Output 89.8.20:

plot x=n min=20 max=500
key = oncurves;
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Output 89.8.20 Plot with Directly Labeled Curves

Modifying Symbol Locations

The default locations for plotting symbols are the points computed directly from the power and sample
size algorithms. For example, Output 89.8.5 shows plotting symbols corresponding to computed points.
The curves connecting these points are interpolated (as indicated by the INTERPOL= option in the PLOT
statement).

You can modify the locations of plotting symbols by using the MARKERS= option in the PLOT statement.
The MARKERS=ANALYSIS option places plotting symbols at locations corresponding to the input specified
in the analysis statement preceding the PLOT statement. You might prefer this as an alternative to using
reference lines to highlight specific points. For example, you can reproduce Output 89.8.5, but with the
plotting symbols located at the sample sizes shown in Output 89.8.1, by using the following statements:
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proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 15 18
stddev = 7 9
power = .
ntotal = 232 382 60 98;

plot x=n min=20 max=500
markers=analysis;

run;

The analysis statement here is the TWOSAMPLEMEANS statement. The MARKERS=ANALYSIS option in
the PLOT statement causes the plotting symbols to occur at sample sizes specified by the NTOTAL= option in
the TWOSAMPLEMEANS statement: 232, 382, 60, and 98. The resulting plot is shown in Output 89.8.21.

Output 89.8.21 Plot with MARKERS=ANALYSIS

You can also use the MARKERS=NICE option to align symbols with the tick marks on one of the axes (the
X axis when the X= option is used, or the Y axis when the Y= option is used):

plot x=n min=20 max=500
markers=nice;

The plot created by this PLOT statement is shown in Output 89.8.22.
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Output 89.8.22 Plot with MARKERS=NICE

Note that the plotting symbols are aligned with the tick marks on the X axis because the X= option is
specified.

Example 89.9: Binary Logistic Regression with Independent Predictors
Suppose you are planning an industrial experiment similar to the analysis in “Getting Started: LOGISTIC
Procedure” on page 5296 in Chapter 72, “The LOGISTIC Procedure,” but for a different type of ingot. The
primary test of interest is the likelihood ratio chi-square test of the effect of heating time on the readiness of
the ingots for rolling. Ingots will be randomized independently into one of four different heating times (5, 10,
15, and 20 minutes) with allocation ratios 2:3:3:2 and three different soaking times (2, 4, and 6 minutes) with
allocation ratios 2:2:1. The mass of each ingot will be measured as a covariate.
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You want to know how many ingots you must sample to have a 90% chance of detecting an odds ratio as
small as 1.2 for a five-minute heating time increase. The odds ratio is defined here as the odds of the ingot
not being ready given a heating time of h minutes divided by the odds given a heating time of h – 5 minutes,
for any time h. You will use a significance level of ˛ = 0.1 to balance Type I and Type II errors since you
consider their importance to be roughly equal.

The distributions of heating time and soaking time are determined by the design, but you must conjecture the
distribution of ingot mass. Suppose you expect its distribution to be approximately normal with mean 4 kg
and standard deviation between 1 kg and 2 kg.

You are powering the study for an odds ratio of 1.2 for the heating time, but you must also conjecture odds
ratios for soaking time and mass. You suspect that the odds ratio for a unit increase in soaking time is about
1.4, and the odds ratio for a unit increase in mass is between 1 and 1.3.

Finally, you must provide a guess for the average probability of an ingot not being ready for rolling, averaged
across all possible design profiles. Existing data suggest that this probability lies between 0.15 and 0.25.

You decide to evaluate sample size at the two extremes of each parameter for which you conjectured a range.
Use the following statements to perform the sample size determination:

proc power;
logistic

vardist("Heat") = ordinal((5 10 15 20) : (0.2 0.3 0.3 0.2))
vardist("Soak") = ordinal((2 4 6) : (0.4 0.4 0.2))
vardist("Mass1") = normal(4, 1)
vardist("Mass2") = normal(4, 2)
testpredictor = "Heat"
covariates = "Soak" | "Mass1" "Mass2"
responseprob = 0.15 0.25
testoddsratio = 1.2
units= ("Heat" = 5)
covoddsratios = 1.4 | 1 1.3
alpha = 0.1
power = 0.9
ntotal = .;

run;

The VARDIST= option is used to define the distributions of the predictor variables. The distributions
of heating and soaking times are defined by the experimental design, with ordinal probabilities derived
from the allocation ratios. The two conjectured standard deviations for the ingot mass are represented
in the Mass1 and Mass2 distributions. The TESTPREDICTOR= option identifies the predictor being
tested, and the COVARIATES= option specifies the scenarios for the remaining predictors in the model
(soaking time and mass). The RESPONSEPROB= option specifies the overall response probability, and
the TESTODDSRATIO= and UNITS= options indicate the odds ratio and increment for heating time. The
COVODDSRATIOS= option specifies the scenarios for the odds ratios of soaking time and mass. The default
DEFAULTUNIT=1 option specifies a unit change for both of these odds ratios. The ALPHA= option sets the
significance level, and the POWER= option defines the target power. Finally, the NTOTAL= option with a
missing value (.) identifies the parameter to solve for.

Output 89.9.1 shows the results.
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Output 89.9.1 Sample Sizes for Test of Heating Time in Logistic Regression

The POWER Procedure
Likelihood Ratio Chi-Square Test for One Predictor

The POWER Procedure
Likelihood Ratio Chi-Square Test for One Predictor

Fixed Scenario Elements

Method Shieh-O'Brien approximation

Alpha 0.1

Test Predictor Heat

Odds Ratio for Test Predictor 1.2

Unit for Test Pred Odds Ratio 5

Nominal Power 0.9

Computed N Total

Index
Response

Prob Covariates
Cov
ORs

Cov
Units

Total
N

Bins
Actual
Power

N
Total

1 0.15 Soak Mass1 1.4 1.0 1 1 120 0.900 1878

2 0.15 Soak Mass1 1.4 1.3 1 1 120 0.900 1872

3 0.15 Soak Mass2 1.4 1.0 1 1 120 0.900 1878

4 0.15 Soak Mass2 1.4 1.3 1 1 120 0.900 1857

5 0.25 Soak Mass1 1.4 1.0 1 1 120 0.900 1342

6 0.25 Soak Mass1 1.4 1.3 1 1 120 0.900 1348

7 0.25 Soak Mass2 1.4 1.0 1 1 120 0.900 1342

8 0.25 Soak Mass2 1.4 1.3 1 1 120 0.900 1369

The required sample size ranges from 1342 to 1878, depending on the unknown true values of the overall
response probability, mass standard deviation, and soaking time odds ratio. The overall response probability
clearly has the largest influence among these parameters, with a sample size increase of almost 40% going
from 0.25 to 0.15.

Example 89.10: Wilcoxon-Mann-Whitney Test
Consider a hypothetical clinical trial to treat interstitial cystitis (IC), a painful, chronic inflammatory condition
of the bladder with no known cause that most commonly affects women. Two treatments will be compared:
lidocaine alone (“lidocaine”) versus lidocaine plus a fictitious experimental drug called Mironel (“Mir+lido”).
The design is balanced, randomized, double-blind, and female-only. The primary outcome is a measure of
overall improvement at week 4 of the study, measured on a seven-point Likert scale as shown in Table 89.36.
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Table 89.36 Self-Report Improvement Scale

Compared to when I started
this study, my condition is:

Much worse –3
Worse –2
Slightly worse –1
The same 0
Slightly better +1
Better +2
Much better +3

The planned data analysis is a one-sided Wilcoxon-Mann-Whitney test with ˛ = 0.05 where the alternative
hypothesis represents greater improvement for “Mir+lido.”

You are asked to graphically assess the power of the planned trial for sample sizes between 100 and 250,
assuming that the conditional outcome probabilities given treatment are equal to the values in Table 89.37.

Table 89.37 Conjectured Conditional Probabilities

Response
Treatment –3 –2 –1 0 +1 +2 +3
Lidocaine 0.01 0.04 0.20 0.50 0.20 0.04 0.01
Mir+lido 0.01 0.03 0.15 0.35 0.30 0.10 0.06

Use the following statements to compute the power at sample sizes of 100 and 250 and generate a power
curve:

ods graphics on;

proc power;
twosamplewilcoxon

vardist("lidocaine") = ordinal ((-3 -2 -1 0 1 2 3) :
(.01 .04 .20 .50 .20 .04 .01))

vardist("Mir+lido") = ordinal ((-3 -2 -1 0 1 2 3) :
(.01 .03 .15 .35 .30 .10 .06))

variables = "lidocaine" | "Mir+lido"
sides = u
ntotal = 100 250
power = .;

plot step=10;
run;

ods graphics off;

The VARDIST= option is used to define the distribution for each treatment, and the VARIABLES= option
specifies the distributions to compare. The SIDES=U option corresponds to the alternative hypothesis that
the second distribution ("Mir+lido") is more favorable. The NTOTAL= option specifies the total sample sizes
of interest, and the POWER= option with a missing value (.) identifies the parameter to solve for. The default
GROUPWEIGHTS= and ALPHA= options specify a balanced design and significance level ˛ = 0.05.
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The STEP=10 option in the PLOT statement requests a point for each sample size increment of 10. The
default values for the X=, MIN=, and MAX= plot options specify a sample size range of 100 to 250 (the
same as in the analysis) for the X axis.

The tabular and graphical results are shown in Output 89.10.1 and Output 89.10.2, respectively.

Output 89.10.1 Power Values for Wilcoxon-Mann-Whitney Test

The POWER Procedure
Wilcoxon-Mann-Whitney Test

The POWER Procedure
Wilcoxon-Mann-Whitney Test

Fixed Scenario Elements

Method O'Brien-Castelloe approximation

Number of Sides U

Group 1 Variable lidocaine

Group 2 Variable Mir+lido

Pooled Number of Bins 7

Alpha 0.05

Group 1 Weight 1

Group 2 Weight 1

NBins per Group 1000

Computed Power

Index
N

Total Power

1 100 0.651

2 250 0.939
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Output 89.10.2 Plot of Power versus Sample Size for Wilcoxon Power Analysis

The achieved power ranges from 0.651 to 0.939, increasing with sample size.
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power and sample size (POWER), 7166, 7173,
7259

paired-difference t test, see paired t test
partial correlations

power and sample size (POWER), 7137, 7140,
7230, 7231, 7302

Pearson chi-square test
power and sample size (POWER), 7179, 7185,

7267
Pearson correlation statistics

power and sample size (POWER), 7137, 7230,
7231, 7302

plots
power and sample size (POWER), 7111, 7119,

7120, 7175, 7311
power

overview of power concepts (POWER), 7213
See POWER procedure, 7109

power curves, see plots
POWER procedure

AB/BA crossover designs, 7295
actual alpha, 7221
actual power, 7118, 7219, 7221
actual prob(width), 7221
analysis of variance, 7155, 7159, 7254, 7281
analysis statements, 7119
bar (|) operator, 7217
binomial proportion confidence interval,

7247–7250
binomial proportion confidence interval precision,

7148
binomial proportion tests, 7140, 7146, 7232,

7233, 7235, 7286
ceiling sample size, 7118, 7221
compared to other procedures, 7111
computational methods, 7222
computational resources, 7222
confidence intervals for means, 7148, 7154, 7166,

7175, 7187, 7196, 7253, 7263, 7274, 7308
contrasts, analysis of variance, 7155, 7156, 7159,

7254, 7281
correlated proportions, 7160, 7164, 7166, 7257
correlation, 7137, 7230, 7231, 7302
Cox proportional hazards regression, 7120, 7124,

7224
crossover designs, 7295
displayed output, 7221
effect size, 7177
equivalence tests, 7147, 7148, 7154, 7166, 7174,

7187, 7195, 7196, 7252, 7261, 7272, 7273,
7295

Farrington-Manning test, 7179, 7186, 7265, 7266
Fisher’s exact test, 7179, 7186, 7268
Fisher’s z test for correlation, 7137, 7140, 7230,

7302
fractional sample size, 7118, 7221
Gehan test, 7196, 7207, 7274
graphics, 7280
grouped-name-lists, 7216
grouped-number-lists, 7216
introductory example, 7111
keyword-lists, 7216
likelihood-ratio chi-square test, 7179, 7186, 7267
log-rank test for comparing survival curves, 7196,

7206, 7274, 7306
logistic regression, 7124, 7225, 7335
lognormal data, 7150, 7153, 7154, 7169, 7173,

7174, 7189, 7195, 7196, 7251, 7252, 7259,
7261, 7271, 7273, 7298

McNemar’s test, 7160, 7164, 7166, 7257
name-lists, 7216
nominal power, 7118, 7219, 7221
noninferiority tests, 7147, 7298
notation for formulas, 7223



number-lists, 7216
odds ratio, 7179, 7185, 7263, 7267
ODS graph names, 7280
ODS Graphics, 7280
ODS table names, 7221
one-sample t test, 7111, 7148, 7153, 7250, 7251
one-way ANOVA, 7155, 7159, 7254, 7281
overview of power concepts, 7213
paired proportions, 7160, 7164, 7166, 7257
paired t test, 7166, 7173, 7259
partial correlation, 7137, 7140, 7230, 7231, 7302
Pearson chi-square test, 7179, 7185, 7267
Pearson correlation, 7137, 7140, 7230, 7231,

7302
plots, 7111, 7119, 7120, 7175, 7311
regression, 7132, 7136, 7228, 7302
relative risk, 7179, 7185, 7263, 7266, 7267
risk difference, 7265
sample size adjustment, 7219
statistical graphics, 7280
summary of analyses, 7214
summary of statements, 7119
superiority tests, 7147
survival analysis, 7120, 7124, 7196, 7206, 7274
t test for correlation, 7137, 7140, 7231
t tests, 7148, 7153, 7166, 7173, 7187, 7194, 7250,

7251, 7259, 7268, 7271, 7311
Tarone-Ware test, 7196, 7208, 7274
two-sample t test, 7114, 7187, 7194, 7195, 7268,

7270, 7271, 7311
value lists, 7216
Wilcoxon-Mann-Whitney (rank-sum) test, 7208,

7212, 7278
Wilcoxon-Mann-Whitney test, 7337
z test, 7140, 7146, 7233, 7235

precision, confidence intervals, 7213
prospective power, 7110

rank-sum test, see Wilcoxon-Mann-Whitney
(rank-sum) test

regression
power and sample size (POWER), 7132, 7136,

7228, 7302
relative risk

power and sample size (POWER), 7179, 7185,
7263, 7266, 7267

retrospective power, 7110
risk difference

power and sample size (POWER), 7265

sample size
overview of power concepts (POWER), 7213
See POWER procedure, 7109

sample size adjustment

POWER procedure, 7219
Satterthwaite t test

power and sample size (POWER), 7187, 7195,
7270

sawtooth power function, 7286
statistical graphics

POWER procedure, 7280
superiority tests

power and sample size (POWER), 7147
survival analysis

power and sample size (POWER), 7120, 7124,
7196, 7206, 7274

t test
power and sample size (POWER), 7148, 7153,

7166, 7173, 7187, 7194, 7250, 7251, 7259,
7268

t test for correlation
power and sample size (POWER), 7137, 7140,

7231
Tarone-Ware test for homogeneity

power and sample size (POWER), 7196, 7208,
7274

two-sample t-test
power and sample size (POWER), 7114, 7187,

7194, 7195, 7268, 7270, 7271, 7311
Type I error, 7213
Type II error, 7213

value lists
POWER procedure, 7216

Welch t test
power and sample size (POWER), 7187, 7195,

7270
width, confidence intervals, 7213
Wilcoxon rank-sum test, see Wilcoxon-Mann-Whitney

(rank-sum) test
Wilcoxon-Mann-Whitney (rank-sum) test

power and sample size (POWER), 7208, 7278
Wilcoxon-Mann-Whitney test

power and sample size (POWER), 7212, 7337

z test
power and sample size (POWER), 7140, 7146,

7233, 7235





Syntax Index

ACCRUALRATEPERGROUP= option
TWOSAMPLESURVIVAL statement (POWER),

7198
ACCRUALRATETOTAL= option

TWOSAMPLESURVIVAL statement (POWER),
7198

ACCRUALTIME= option
TWOSAMPLESURVIVAL statement (POWER),

7199
ALPHA= option

COXREG statement (POWER), 7121
LOGISTIC statement (POWER), 7126
MULTREG statement (POWER), 7133
ONECORR statement (POWER), 7138
ONESAMPLEFREQ statement (POWER), 7142
ONESAMPLEMEANS statement (POWER),

7150
ONEWAYANOVA statement (POWER), 7156
PAIREDFREQ statement (POWER), 7161
PAIREDMEANS statement (POWER), 7168
TWOSAMPLEFREQ statement (POWER), 7181
TWOSAMPLEMEANS statement (POWER),

7189
TWOSAMPLESURVIVAL statement (POWER),

7199
TWOSAMPLEWILCOXON statement

(POWER), 7209

CI= option
ONESAMPLEFREQ statement (POWER), 7142
ONESAMPLEMEANS statement (POWER),

7150
PAIREDMEANS statement (POWER), 7168
TWOSAMPLEMEANS statement (POWER),

7189
CONTRAST= option

ONEWAYANOVA statement (POWER), 7156
CORR= option

LOGISTIC statement (POWER), 7126
ONECORR statement (POWER), 7138
PAIREDFREQ statement (POWER), 7161
PAIREDMEANS statement (POWER), 7168

COVARIATES= option
LOGISTIC statement (POWER), 7126

COVODDSRATIOS= option
LOGISTIC statement (POWER), 7126

COVREGCOEFFS= option
LOGISTIC statement (POWER), 7126

COXREG statement
POWER procedure, 7120

CURVE= option
TWOSAMPLESURVIVAL statement (POWER),

7199
CV= option

ONESAMPLEMEANS statement (POWER),
7150

PAIREDMEANS statement (POWER), 7169
TWOSAMPLEMEANS statement (POWER),

7189

DEFAULTNBINS= option
LOGISTIC statement (POWER), 7126

DEFAULTUNIT= option
LOGISTIC statement (POWER), 7127

DESCRIPTION= option
PLOT statement (POWER), 7179

DISCPROPDIFF= option
PAIREDFREQ statement (POWER), 7161

DISCPROPORTIONS= option
PAIREDFREQ statement (POWER), 7161

DISCPROPRATIO= option
PAIREDFREQ statement (POWER), 7161

DIST= option
ONECORR statement (POWER), 7138
ONESAMPLEMEANS statement (POWER),

7150
PAIREDFREQ statement (POWER), 7161
PAIREDMEANS statement (POWER), 7169
TWOSAMPLEMEANS statement (POWER),

7189

EQUIVBOUNDS= option
ONESAMPLEFREQ statement (POWER), 7143

EVENTPROB= option
COXREG statement (POWER), 7122

EVENTSTOTAL= option
COXREG statement (POWER), 7122
TWOSAMPLESURVIVAL statement (POWER),

7200

FOLLOWUPTIME= option
TWOSAMPLESURVIVAL statement (POWER),

7200

GROUPACCRUALRATES= option
TWOSAMPLESURVIVAL statement (POWER),

7200



GROUPLOSS= option
TWOSAMPLESURVIVAL statement (POWER),

7200
GROUPLOSSEXPHAZARDS= option

TWOSAMPLESURVIVAL statement (POWER),
7201

GROUPMEANS= option
ONEWAYANOVA statement (POWER), 7156
TWOSAMPLEMEANS statement (POWER),

7189
GROUPMEDLOSSTIMES= option

TWOSAMPLESURVIVAL statement (POWER),
7201

GROUPMEDSURVTIMES= option
TWOSAMPLESURVIVAL statement (POWER),

7201
GROUPNS= option

ONEWAYANOVA statement (POWER), 7156
TWOSAMPLEFREQ statement (POWER), 7181
TWOSAMPLEMEANS statement (POWER),

7190
TWOSAMPLESURVIVAL statement (POWER),

7201
TWOSAMPLEWILCOXON statement

(POWER), 7209
GROUPPROPORTIONS= option

TWOSAMPLEFREQ statement (POWER), 7181
GROUPSTDDEVS= option

TWOSAMPLEMEANS statement (POWER),
7190

GROUPSURVEXPHAZARDS= option
TWOSAMPLESURVIVAL statement (POWER),

7201
GROUPSURVIVAL= option

TWOSAMPLESURVIVAL statement (POWER),
7201

GROUPWEIGHTS= option
ONEWAYANOVA statement (POWER), 7156
TWOSAMPLEFREQ statement (POWER), 7181
TWOSAMPLEMEANS statement (POWER),

7190
TWOSAMPLESURVIVAL statement (POWER),

7202
TWOSAMPLEWILCOXON statement

(POWER), 7210

HALFWIDTH= option
ONESAMPLEFREQ statement (POWER), 7143
ONESAMPLEMEANS statement (POWER),

7150
PAIREDMEANS statement (POWER), 7169
TWOSAMPLEMEANS statement (POWER),

7190
HAZARDRATIO= option

COXREG statement (POWER), 7122
TWOSAMPLESURVIVAL statement (POWER),

7202

INTERCEPT= option
LOGISTIC statement (POWER), 7127

INTERPOL= option
PLOT statement (POWER), 7176

KEY= option
PLOT statement (POWER), 7176

LOGISTIC statement
POWER procedure, 7124

LOWER= option
ONESAMPLEFREQ statement (POWER), 7143
ONESAMPLEMEANS statement (POWER),

7150
PAIREDMEANS statement (POWER), 7169
TWOSAMPLEMEANS statement (POWER),

7190

MARGIN= option
ONESAMPLEFREQ statement (POWER), 7143

MARKERS= option
PLOT statement (POWER), 7176

MAX= option
PLOT statement (POWER), 7177

MEAN= option
ONESAMPLEMEANS statement (POWER),

7151
MEANDIFF= option

PAIREDMEANS statement (POWER), 7169
TWOSAMPLEMEANS statement (POWER),

7190
MEANRATIO= option

PAIREDMEANS statement (POWER), 7169
TWOSAMPLEMEANS statement (POWER),

7191
METHOD= option

ONESAMPLEFREQ statement (POWER), 7143
PAIREDFREQ statement (POWER), 7161

MIN= option
PLOT statement (POWER), 7177

MODEL= option
MULTREG statement (POWER), 7133
ONECORR statement (POWER), 7138

MULTREG statement
POWER procedure, 7132

NAME= option
PLOT statement (POWER), 7179

NBINS= option
LOGISTIC statement (POWER), 7127



TWOSAMPLEWILCOXON statement
(POWER), 7210

NFRACTIONAL option
COXREG statement (POWER), 7122
LOGISTIC statement (POWER), 7127
MULTREG statement (POWER), 7134
ONECORR statement (POWER), 7138
ONESAMPLEMEANS statement (POWER),

7151
ONEWAYANOVA statement (POWER), 7157
PAIREDFREQ statement (POWER), 7162
PAIREDMEANS statement (POWER), 7169
TWOSAMPLEFREQ statement (POWER), 7181
TWOSAMPLEMEANS statement (POWER),

7191
TWOSAMPLESURVIVAL statement (POWER),

7202
NFRACTIONAL= option

ONESAMPLEFREQ statement (POWER), 7144
TWOSAMPLEWILCOXON statement

(POWER), 7210
NFULLPREDICTORS= option

MULTREG statement (POWER), 7134
NOINT option

MULTREG statement (POWER), 7134
NPAIRS= option

PAIREDFREQ statement (POWER), 7162
PAIREDMEANS statement (POWER), 7169

NPARTIALVARS= option
ONECORR statement (POWER), 7138

NPERGROUP= option
ONEWAYANOVA statement (POWER), 7157
TWOSAMPLEFREQ statement (POWER), 7182
TWOSAMPLEMEANS statement (POWER),

7191
TWOSAMPLESURVIVAL statement (POWER),

7202
TWOSAMPLEWILCOXON statement

(POWER), 7210
NPOINTS= option

PLOT statement (POWER), 7177
NREDUCEDPREDICTORS= option

MULTREG statement (POWER), 7134
NSUBINTERVAL= option

TWOSAMPLESURVIVAL statement (POWER),
7202

NTESTPREDICTORS= option
MULTREG statement (POWER), 7134

NTOTAL= option
COXREG statement (POWER), 7122
LOGISTIC statement (POWER), 7128
MULTREG statement (POWER), 7134
ONECORR statement (POWER), 7138
ONESAMPLEFREQ statement (POWER), 7144

ONESAMPLEMEANS statement (POWER),
7151

ONEWAYANOVA statement (POWER), 7157
TWOSAMPLEFREQ statement (POWER), 7182
TWOSAMPLEMEANS statement (POWER),

7191
TWOSAMPLESURVIVAL statement (POWER),

7202
TWOSAMPLEWILCOXON statement

(POWER), 7210
NULLCONTRAST= option

ONEWAYANOVA statement (POWER), 7157
NULLCORR= option

ONECORR statement (POWER), 7139
NULLDIFF= option

PAIREDMEANS statement (POWER), 7170
TWOSAMPLEMEANS statement (POWER),

7191
NULLDISCPROPRATIO= option

PAIREDFREQ statement (POWER), 7162
NULLMEAN= option

ONESAMPLEMEANS statement (POWER),
7151

NULLODDSRATIO= option
TWOSAMPLEFREQ statement (POWER), 7182

NULLPROPORTION= option
ONESAMPLEFREQ statement (POWER), 7144

NULLPROPORTIONDIFF= option
TWOSAMPLEFREQ statement (POWER), 7182

NULLRATIO= option
PAIREDMEANS statement (POWER), 7170
TWOSAMPLEMEANS statement (POWER),

7191
NULLRELATIVERISK= option

TWOSAMPLEFREQ statement (POWER), 7182

ODDSRATIO= option
PAIREDFREQ statement (POWER), 7162
TWOSAMPLEFREQ statement (POWER), 7182

ONECORR statement
POWER procedure, 7137

ONESAMPLEFREQ statement
POWER procedure, 7140

ONESAMPLEMEANS statement
POWER procedure, 7148

ONEWAYANOVA statement
POWER procedure, 7155

OUTPUTORDER= option
COXREG statement (POWER), 7122
LOGISTIC statement (POWER), 7128
MULTREG statement (POWER), 7134
ONECORR statement (POWER), 7139
ONESAMPLEFREQ statement (POWER), 7144



ONESAMPLEMEANS statement (POWER),
7151

ONEWAYANOVA statement (POWER), 7157
PAIREDFREQ statement (POWER), 7162
PAIREDMEANS statement (POWER), 7170
TWOSAMPLEFREQ statement (POWER), 7182
TWOSAMPLEMEANS statement (POWER),

7191
TWOSAMPLESURVIVAL statement (POWER),

7203
TWOSAMPLEWILCOXON statement

(POWER), 7210

PAIREDCVS= option
PAIREDMEANS statement (POWER), 7170

PAIREDFREQ statement
POWER procedure, 7160

PAIREDMEANS statement
POWER procedure, 7166

PAIREDMEANS= option
PAIREDMEANS statement (POWER), 7171

PAIREDPROPORTIONS= option
PAIREDFREQ statement (POWER), 7163

PAIREDSTDDEVS= option
PAIREDMEANS statement (POWER), 7171

PARTIALCORR= option
MULTREG statement (POWER), 7135

PLOT statement
POWER procedure, 7175

PLOTONLY= option
PROC POWER statement, 7120

POWER procedure
syntax, 7119

POWER procedure, COXREG statement, 7120
ALPHA= option, 7121
EVENTPROB= option, 7122
EVENTSTOTAL= option, 7122
HAZARDRATIO= option, 7122
NFRACTIONAL option, 7122
NTOTAL= option, 7122
OUTPUTORDER= option, 7122
POWER= option, 7123
RSQUARE= option, 7123
SIDES= option, 7123
STDDEV= option, 7123
TEST= option, 7123

POWER procedure, LOGISTIC statement, 7124
ALPHA= option, 7126
CORR= option, 7126
COVARIATES= option, 7126
COVODDSRATIOS= option, 7126
COVREGCOEFFS= option, 7126
DEFAULTNBINS= option, 7126
DEFAULTUNIT= option, 7127

INTERCEPT= option, 7127
NBINS= option, 7127
NFRACTIONAL option, 7127
NTOTAL= option, 7128
OUTPUTORDER= option, 7128
POWER= option, 7128
RESPONSEPROB= option, 7128
TEST= option, 7128
TESTODDSRATIO= option, 7129
TESTPREDICTOR= option, 7129
TESTREGCOEFF= option, 7129
UNITS= option, 7129
VARDIST= option, 7129

POWER procedure, MULTREG statement, 7132
ALPHA= option, 7133
MODEL= option, 7133
NFRACTIONAL option, 7134
NFULLPREDICTORS= option, 7134
NOINT option, 7134
NREDUCEDPREDICTORS= option, 7134
NTESTPREDICTORS= option, 7134
NTOTAL= option, 7134
OUTPUTORDER= option, 7134
PARTIALCORR= option, 7135
POWER= option, 7135
RSQUAREDIFF= option, 7135
RSQUAREFULL= option, 7135
RSQUAREREDUCED= option, 7135
TEST= option, 7136

POWER procedure, ONECORR statement, 7137
ALPHA= option, 7138
CORR= option, 7138
DIST= option, 7138
MODEL= option, 7138
NFRACTIONAL option, 7138
NPARTIALVARS= option, 7138
NTOTAL= option, 7138
NULLCORR= option, 7139
OUTPUTORDER= option, 7139
POWER= option, 7139
SIDES= option, 7139
TEST= option, 7139

POWER procedure, ONESAMPLEFREQ statement,
7140

ALPHA= option, 7142
CI= option, 7142
EQUIVBOUNDS= option, 7143
HALFWIDTH= option, 7143
LOWER= option, 7143
MARGIN= option, 7143
METHOD= option, 7143
NFRACTIONAL= option, 7144
NTOTAL= option, 7144
NULLPROPORTION= option, 7144



OUTPUTORDER= option, 7144
POWER= option, 7144
PROBWIDTH= option, 7144
PROPORTION= option, 7145
SIDES= option, 7145
TEST= option, 7145
UPPER= option, 7145
VAREST= option, 7145

POWER procedure, ONESAMPLEMEANS statement,
7148

ALPHA= option, 7150
CI= option, 7150
CV= option, 7150
DIST= option, 7150
HALFWIDTH= option, 7150
LOWER= option, 7150
MEAN= option, 7151
NFRACTIONAL option, 7151
NTOTAL= option, 7151
NULLMEAN= option, 7151
OUTPUTORDER= option, 7151
POWER= option, 7152
PROBTYPE= option, 7152
PROBWIDTH= option, 7152
SIDES= option, 7152
STDDEV= option, 7153
TEST= option, 7153
UPPER= option, 7153

POWER procedure, ONEWAYANOVA statement,
7155

ALPHA= option, 7156
CONTRAST= option, 7156
GROUPMEANS= option, 7156
GROUPNS= option, 7156
GROUPWEIGHTS= option, 7156
NFRACTIONAL option, 7157
NPERGROUP= option, 7157
NTOTAL= option, 7157
NULLCONTRAST= option, 7157
OUTPUTORDER= option, 7157
POWER= option, 7158
SIDES= option, 7158
STDDEV= option, 7158
TEST= option, 7158

POWER procedure, PAIREDFREQ statement, 7160
ALPHA= option, 7161
CORR= option, 7161
DISCPROPDIFF= option, 7161
DISCPROPORTIONS= option, 7161
DISCPROPRATIO= option, 7161
DIST= option, 7161
METHOD= option, 7161
NFRACTIONAL option, 7162
NPAIRS= option, 7162

NULLDISCPROPRATIO= option, 7162
ODDSRATIO= option, 7162
OUTPUTORDER= option, 7162
PAIREDPROPORTIONS= option, 7163
POWER= option, 7163
PROPORTIONDIFF= option, 7163
REFPROPORTION= option, 7163
RELATIVERISK= option, 7163
SIDES= option, 7163
TEST= option, 7164
TOTALPROPDISC= option, 7164

POWER procedure, PAIREDMEANS statement, 7166
ALPHA= option, 7168
CI= option, 7168
CORR= option, 7168
CV= option, 7169
DIST= option, 7169
HALFWIDTH= option, 7169
LOWER= option, 7169
MEANDIFF= option, 7169
MEANRATIO= option, 7169
NFRACTIONAL option, 7169
NPAIRS= option, 7169
NULLDIFF= option, 7170
NULLRATIO= option, 7170
OUTPUTORDER= option, 7170
PAIREDCVS= option, 7170
PAIREDMEANS= option, 7171
PAIREDSTDDEVS= option, 7171
POWER= option, 7171
PROBTYPE= option, 7171
PROBWIDTH= option, 7171
SIDES= option, 7171
STDDEV= option, 7172
TEST= option, 7172
UPPER= option, 7172

POWER procedure, PLOT statement, 7175
DESCRIPTION= option, 7179
INTERPOL= option, 7176
KEY= option, 7176
MARKERS= option, 7176
MAX= option, 7177
MIN= option, 7177
NAME= option, 7179
NPOINTS= option, 7177
STEP= option, 7177
VARY option, 7177
X= option, 7177
XOPTS= option, 7178
Y= option, 7179
YOPTS= option, 7179

POWER procedure, PROC POWER statement, 7120
PLOTONLY= option, 7120



POWER procedure, TWOSAMPLEFREQ statement,
7179

ALPHA= option, 7181
GROUPNS= option, 7181
GROUPPROPORTIONS= option, 7181
GROUPWEIGHTS= option, 7181
NFRACTIONAL option, 7181
NPERGROUP= option, 7182
NTOTAL= option, 7182
NULLODDSRATIO= option, 7182
NULLPROPORTIONDIFF= option, 7182
NULLRELATIVERISK= option, 7182
ODDSRATIO= option, 7182
OUTPUTORDER= option, 7182
POWER= option, 7183
PROPORTIONDIFF= option, 7183
REFPROPORTION= option, 7183
RELATIVERISK= option, 7183
SIDES= option, 7183
TEST= option, 7184

POWER procedure, TWOSAMPLEMEANS statement,
7187

ALPHA= option, 7189
CI= option, 7189
CV= option, 7189
DIST= option, 7189
GROUPMEANS= option, 7189
GROUPNS= option, 7190
GROUPSTDDEVS= option, 7190
GROUPWEIGHTS= option, 7190
HALFWIDTH= option, 7190
LOWER= option, 7190
MEANDIFF= option, 7190
MEANRATIO= option, 7191
NFRACTIONAL option, 7191
NPERGROUP= option, 7191
NTOTAL= option, 7191
NULLDIFF= option, 7191
NULLRATIO= option, 7191
OUTPUTORDER= option, 7191
POWER= option, 7192
PROBTYPE= option, 7192
PROBWIDTH= option, 7192
SIDES= option, 7192
STDDEV= option, 7193
TEST= option, 7193
UPPER= option, 7193

POWER procedure, TWOSAMPLESURVIVAL
statement, 7196

ACCRUALRATEPERGROUP= option, 7198
ACCRUALRATETOTAL= option, 7198
ACCRUALTIME= option, 7199
ALPHA= option, 7199
CURVE= option, 7199

EVENTSTOTAL= option, 7200
FOLLOWUPTIME= option, 7200
GROUPACCRUALRATES= option, 7200
GROUPLOSS= option, 7200
GROUPLOSSEXPHAZARDS= option, 7201
GROUPMEDLOSSTIMES= option, 7201
GROUPMEDSURVTIMES= option, 7201
GROUPNS= option, 7201
GROUPSURVEXPHAZARDS= option, 7201
GROUPSURVIVAL= option, 7201
GROUPWEIGHTS= option, 7202
HAZARDRATIO= option, 7202
NFRACTIONAL option, 7202
NPERGROUP= option, 7202
NSUBINTERVAL= option, 7202
NTOTAL= option, 7202
OUTPUTORDER= option, 7203
POWER= option, 7203
REFSURVEXPHAZARD= option, 7203
REFSURVIVAL= option, 7204
SIDES= option, 7204
TEST= option, 7204
TOTALTIME= option, 7204

POWER procedure, TWOSAMPLEWILCOXON
statement, 7208

ALPHA= option, 7209
GROUPNS= option, 7209
GROUPWEIGHTS= option, 7210
NBINS= option, 7210
NFRACTIONAL= option, 7210
NPERGROUP= option, 7210
NTOTAL= option, 7210
OUTPUTORDER= option, 7210
POWER= option, 7211
SIDES= option, 7211
TEST= option, 7211
VARDIST= option, 7211
VARIABLES= option, 7212

POWER= option
COXREG statement (POWER), 7123
LOGISTIC statement (POWER), 7128
MULTREG statement (POWER), 7135
ONECORR statement (POWER), 7139
ONESAMPLEFREQ statement (POWER), 7144
ONESAMPLEMEANS statement (POWER),

7152
ONEWAYANOVA statement (POWER), 7158
PAIREDFREQ statement (POWER), 7163
PAIREDMEANS statement (POWER), 7171
TWOSAMPLEFREQ statement (POWER), 7183
TWOSAMPLEMEANS statement (POWER),

7192
TWOSAMPLESURVIVAL statement (POWER),

7203



TWOSAMPLEWILCOXON statement
(POWER), 7211

PROBTYPE= option
ONESAMPLEMEANS statement (POWER),

7152
PAIREDMEANS statement (POWER), 7171
TWOSAMPLEMEANS statement (POWER),

7192
PROBWIDTH= option

ONESAMPLEFREQ statement (POWER), 7144
ONESAMPLEMEANS statement (POWER),

7152
PAIREDMEANS statement (POWER), 7171
TWOSAMPLEMEANS statement (POWER),

7192
PROC POWER statement, see POWER procedure
PROPORTION= option

ONESAMPLEFREQ statement (POWER), 7145
PROPORTIONDIFF= option

PAIREDFREQ statement (POWER), 7163
TWOSAMPLEFREQ statement (POWER), 7183

REFPROPORTION= option
PAIREDFREQ statement (POWER), 7163
TWOSAMPLEFREQ statement (POWER), 7183

REFSURVEXPHAZARD= option
TWOSAMPLESURVIVAL statement (POWER),

7203
REFSURVIVAL= option

TWOSAMPLESURVIVAL statement (POWER),
7204

RELATIVERISK= option
PAIREDFREQ statement (POWER), 7163
TWOSAMPLEFREQ statement (POWER), 7183

RESPONSEPROB= option
LOGISTIC statement (POWER), 7128

RSQUARE= option
COXREG statement (POWER), 7123

RSQUAREDIFF= option
MULTREG statement (POWER), 7135

RSQUAREFULL= option
MULTREG statement (POWER), 7135

RSQUAREREDUCED= option
MULTREG statement (POWER), 7135

SIDES= option
COXREG statement (POWER), 7123
ONECORR statement (POWER), 7139
ONESAMPLEFREQ statement (POWER), 7145
ONESAMPLEMEANS statement (POWER),

7152
ONEWAYANOVA statement (POWER), 7158
PAIREDFREQ statement (POWER), 7163
PAIREDMEANS statement (POWER), 7171

TWOSAMPLEFREQ statement (POWER), 7183
TWOSAMPLEMEANS statement (POWER),

7192
TWOSAMPLESURVIVAL statement (POWER),

7204
TWOSAMPLEWILCOXON statement

(POWER), 7211
STDDEV= option

COXREG statement (POWER), 7123
ONESAMPLEMEANS statement (POWER),

7153
ONEWAYANOVA statement (POWER), 7158
PAIREDMEANS statement (POWER), 7172
TWOSAMPLEMEANS statement (POWER),

7193
STEP= option

PLOT statement (POWER), 7177

TEST= option
COXREG statement (POWER), 7123
LOGISTIC statement (POWER), 7128
MULTREG statement (POWER), 7136
ONECORR statement (POWER), 7139
ONESAMPLEFREQ statement (POWER), 7145
ONESAMPLEMEANS statement (POWER),

7153
ONEWAYANOVA statement (POWER), 7158
PAIREDFREQ statement (POWER), 7164
PAIREDMEANS statement (POWER), 7172
TWOSAMPLEFREQ statement (POWER), 7184
TWOSAMPLEMEANS statement (POWER),

7193
TWOSAMPLESURVIVAL statement (POWER),

7204
TWOSAMPLEWILCOXON statement

(POWER), 7211
TESTODDSRATIO= option

LOGISTIC statement (POWER), 7129
TESTPREDICTOR= option

LOGISTIC statement (POWER), 7129
TESTREGCOEFF= option

LOGISTIC statement (POWER), 7129
TOTALPROPDISC= option

PAIREDFREQ statement (POWER), 7164
TOTALTIME= option

TWOSAMPLESURVIVAL statement (POWER),
7204

TWOSAMPLEFREQ statement
POWER procedure, 7179

TWOSAMPLEMEANS statement
POWER procedure, 7187

TWOSAMPLESURVIVAL statement
POWER procedure, 7196

TWOSAMPLEWILCOXON statement



POWER procedure, 7208

UNITS= option
LOGISTIC statement (POWER), 7129

UPPER= option
ONESAMPLEFREQ statement (POWER), 7145
ONESAMPLEMEANS statement (POWER),

7153
PAIREDMEANS statement (POWER), 7172
TWOSAMPLEMEANS statement (POWER),

7193

VARDIST= option
LOGISTIC statement (POWER), 7129
TWOSAMPLEWILCOXON statement

(POWER), 7211
VAREST= option

ONESAMPLEFREQ statement (POWER), 7145
VARIABLES= option

TWOSAMPLEWILCOXON statement
(POWER), 7212

VARY option
PLOT statement (POWER), 7177

X= option
PLOT statement (POWER), 7177

XOPTS= option
PLOT statement (POWER), 7178

Y= option
PLOT statement (POWER), 7179

YOPTS= option
PLOT statement (POWER), 7179
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