
Chapter 3

Graphics with R

3.1 Low-Level Graphics

R has extensive facilities for producing graphs. There are both low- and high-level
graphics facilities. The low-level graphics facilities provide basic building blocks
which can be used to build up graphs step by step, while the high level facilities provide
a variety of pre-assembled graphical displays. In this chapter we will concentrate on
the low-level graphics facilities. In later chapter’s we’ll examine the high-level ones.

Graphs are produced in R by calling functions which build up graphs in a step-by-
step fashion. As an example, consider the following sequence of function calls which
create the graph shown in figure 3.1.

> plot.new()
> plot.window(xlim=c(0,1), ylim=c(5,10))
> abline(a=6, b=3)
> axis(1)
> axis(2)
> title(main="The Overall Title")
> title(xlab="An x-axis label")
> title(ylab="A y-axis label")
> box()

Each function call carries out a single task associated with drawing the graph.

� plot.new() signals to R that a new plot is to be produced. This will open a new
graphics window if there is none open, otherwise an existing window is readied
to hold the new plot.

� The plot.window() call sets the limits for the x and y coordinates in the graph.

� The abline() call draws a line with intercept 6 and slope 3 across the graph.

� axis(1) draws the x-axis.

� axis(2) draws the y-axis.

� Calls to title() are used to add annotation.

� box() draws a box around the graph.

29



30 Chapter 3. Graphics with R

0.0 0.2 0.4 0.6 0.8 1.0

5
6

7
8

9
10

The Overall Title

An x−axis label

A
 y

−
ax

is
 la

be
l

Figure 3.1: A plot produced with low-level R function calls.

A wide range of graphs can be created by a similar sequence of simple steps. Some
graphs may omit some of the axis or titling steps, but the majority will only differ in
what is drawn inside the central plot region. R has a number of functions which are
designed to draw in the plot region.

3.1.1 Adding Points To A Plot

The function points can be used to add a set of points to a plot. The simplest form of
a call to points has the form

> points(x, y)

where x and y contain the x and y coordinates of the point to be plotted.
This simple form plots each of the points as an open circle, but and additional

optional argument specified with pch= allows different plotting symbols to be used.
The values 1 through 25 specify special graphical plotting symbols, while values from
33 to 126 are taken as the ASCII code for a character. These can also be specified by
enclosing the desired character in quotes.



3.1. Low-Level Graphics 31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Figure 3.2: R plotting symbols.

The value specified for pch can be a vector and so a different plotting symbol can
be specified for each point. If there are more points than pch values, the pch values are
recycled.

By default, all plotting symbols are plotted in black, but other colours can be ob-
tained with an additional argument specified with col=. The simplest form of colour
specification is a colour name given as a character string (e.g. col="purple"). The
value of the col= argument can be a vector so a different colour can be specified for
each symbol plotted.

3.1.2 Adding Connected Line Segments To A Plot

The function lines can be used to draw a connected set of line segments to a plot. A
call to lines has the form

> lines(x, y)

with the x and y arguments containing the coordinates of the points to be joined by
the line segments. If a point has a non-finite value for one of its coordinates, the
lines joining that point to its neighbours are not drawn. This provides a useful way of
obtaining a break in a line.

The texture of the line can be altered with an optional lty= argument. The sim-
plest line specifications are by name — "blank", "solid", "dashed", "dotted",
"dotdash", "longdash" and "twodash". Other specifications are possible using
strings containing either 2 or 4 hexadecimal digits. These are interpreted as the length
of the successive black and white components of the line pattern. For example, "11" is
a high density dotted line, "33" is a short dashed line and "3313" is a dot-dashed line.

The colour of the line can be changed using a col= specification and the width of
the line can be altered using the lwd= argument. Only the first value in each of these
arguments is used.

3.1.3 Drawing Straight Lines Across A Plot

The function abline provides a simple way of drawing a line which extends all the
way across a plot. The line can be described in slope intercept form with arguments a=
and b=. These give the intercept and slope of the line.

Vertical and horizontal lines can be obtained by using the h= and v= arguments.
The function call

> abline(v=1:4)

draws vertical lines at x � 1, x � 2, x � 3 and x � 4. Similarly

> abline(h=1:4)



32 Chapter 3. Graphics with R

draws horizontal lines across the plot at y � 1, y � 2, y � 3 and y � 4.
The colour, width and line texture of the lines drawn by abline can be controlled

with the col=, lwd= and lty= arguments.

3.1.4 Adding Disconnected Lines Segments To A Plot

The function segments adds a set of disconnected line segments to a plot. Each line is
described by four line values — the x and y coordinates of its start point and the x and
y coordinates of its end point.

> segments(x0, y0, x1, y1)

The arguments to segments can be vectors, so that several line segments can be drawn
with a single call.

The optional arguments col=, lwd= and lty= can be used to set the colour, width
and texture of the line segments. The values of these arguments are recycled so it is
possible to specify a single value, or to specify values for each line segment.

3.1.5 Adding Arrows To A Plot

The function arrows can be used to a set of arrows to a plot. As with segments, the
first four arguments give the coordinates of the start and end of the arrows.

There are additional arguments which affect how the arrows are drawn. The value
of the length= argument gives the length of side of the arrow head (in inches). The
value of the angle= argument gives the angle (in degrees) which the sides of the arrow
head make with the shaft. A value of 90 can be useful for drawing error bars. The value
the code= argument specifies which ends of the arrows have an arrow head. code=1
produces a head at the start of arrow, code=2 produces a head at the end of the arrow
and code=3 produces a head at both ends of the arrows.

The optional arguments col=, lwd= and lty= can be used to set the colour, width
and texture of the lines used to draw the arrows. The values of these arguments are
recycled so it is possible to specify a single value, or to specify values for each arrow.

3.1.6 Adding Rectangles To A Plot

The function rect is useful for drawing rectangles whose sides run parallel to the plot
axes. The first four arguments give the coordinates of points which lie at diagonally
opposite sides of the rectangle(s).

Additional arguments effect the way that the rectangles are drawn. The col= ar-
gument indicates the colour that the rectangle(s) should be filled with (the default is
no fill), the border= argument indicates the colour that the border should be drawn
with and the lwd= and lty= arguments describe the width and texture of the line drawn
around the rectangle(s).

3.1.7 Adding Polygons To A Plot

The function polygon draws one or more polygons on a plot. The simplest call to
polygon has the form

> polygon(x, y)



3.1. Low-Level Graphics 33

with x and y containing the x and y coordinates of the vertexes of the polygon. NA
values can be used to separate different polygons. The col=, border=, lwd= and lty=
have the same meaning as for rectangles.

3.1.8 Adding Text To A Plot

The function text draws text strings into a plot. The simplest call has the form:

> text(x, y, labels)

where x and y give the coordinates at which the text is to appear and labels gives a
vector of text strings which are to appear the given coordinates. A number of optional
arguments affect the way in which the text appears.

The argument adj describes the way in which the text is to justified relative to the
point it is being placed at. The specification has the form adj=ax or adj=c(ax, ay),
where ax is a value describing the x justification and ay is a value describing the y
justification. A value of 0 indicates left/lower justification and a value of 1 indicates
right/upper justification. A value of .5 indicates centering.

The argument srt= describes the rotation of the text, in degrees counterclockwise
from horizontal and the argument cex= specifies a magnification factor relative to the
standard size. Not all rotation angles and magnifications may be available for a par-
ticular graphics device. Some experimentation may be required to determine what is
possible.

The colour of text can be set with the col= argument and the typeface can be set
with the font= argument. Setting font=1 produces standard text, font=2 produces
bold text, font=3 produces italic text and font=4 produces bold-italic text.

It is also possible to make use of some basic mathematical typesetting facilities to
place mathematical annotation in plots. Look at the manual entry for plotmath for
details.

3.1.9 Adding A Legend To A Plot

A legend is a small table which explains the coding used in a plot. Legends are typi-
cally used to explain the meaning of symbols, line textures or colours. It is possible to
produce legends using the primitive functions above, but R has a special purpose func-
tion called legend which can be used to add a legend to a plot. The legend function is
very flexible. The cost of this is having a large number of arguments to the function. A
simple example of using legend to indicate the meaning of line types is

> legend(xloc, yloc,
legend = c("Exact", "Approximate"),
lty = c("solid", "dotted"),
xjust = .5, yjust = .5)

This produces a legend with a solid line labeled with “Exact” and a dotted line labelled
with “Approximate.” The legend will be centered on the point

�
xloc,yloc � . It is also

possible to use legend to describe the use of symbols and the use of colours to fill
areas.



34 Chapter 3. Graphics with R

3.2 Customising The Plot Region

When plot.new is called it sets up a default plot region with margins on each side
large enough to contain a minimal amount of annotation (x and y axes, axis labelling
and and overall plot title). The default set up is shown in figure 3.3.

Margin 1

M
ar

gi
n 

4

M
ar

gi
n 

2

Margin 3

Plot Region

Figure 3.3: The standard margins for a plot.

The default margins are often appropriate, but sometimes it is necessary to use a
different choice. The default choice is a predefined graphics parameter and can be
overridden by calling the function par with a different specification. The call to par
needs to be made before the call to plot.new.

Some common forms of specification are:

> par(mar=c(l1 , l2, l3, l4))

where l1, l2, l3 and l4 specify the number of lines of text to be left on four sides of the
plot;

> par(mai=c(i1 , i2, i3, i4))

where i1, i2, i3 and i4 specify the number of inches of space to be left on the four side
of the plot;

> par(pin=c(w, h))

where w and h give the width and height of the plot region in inches.



3.3. Axes and Annotation 35

3.3 Axes and Annotation

We’ve seen how to set up a plot and draw its contents. For many types of plot it is
useful to have a way of drawing axes. The axis function provides a convenient way of
doing this.

The first argument to axis indicates which side of the plot the axis should be drawn
on. The values correspond to the margins as shown in figure 3.3. If just a single
argument is given to axis, a default set of tick mark positions is chosen and marked.
This default choice can be overridden by specifying additional arguments.

The argument at= gives a vector of tick mark positions. These positions are marked
with ticks and the positions labelled with the appropriate numerical values. These nu-
merical labels can be replaced by another choice by using the lab= axis. For example,
the call

> axis(1, at=1:4, lab=c("A", "B", "C", "D"))

puts ticks at 1 � 2 � 3 and 4, and labels them with “A”, “B”, “C” and “D”. The tick marks
can be inhibited by including the argument tick=FALSE.

By default the tick mark labels are placed parallel to their axis. This is an appropri-
ate default choice, but sometimes you may wish to orient the labels differently. Control
over the label orientation is via the argument las. Setting las=0 produces labels which
are placed parallel to their axes, las=1 produces labels which are horizontally oriented,
las=2 produces labels which are at right-angles to the axis and las=3 produces labels
which are vertically oriented. These specifications can be included in the call which
produces a particular axis or can be set permanently using par. For example, setting

> par(las=1)

means that all future tick mark labels will be horizontal.
Standard annotation can be placed around the plot region by using the function

title. The argument main= specifies the overall title for a plot, while xlab= and
ylab= specify labels for the x and y axis.

3.4 Manipulating the Axis Limits

The statement

> plot.window(xlim=c(0,1), ylim=c(10,20))

sets the limits on the x and y axes. By default the specified ranges are enlarged by
6%, so that the specified values do not lie at the very edges of the plot region. This is
appropriate for most types of plot, but sometimes we want the specified limits to lie at
the edges of the plot window. This can be specified separately for each axis using the
arguments xaxs="i" and yaxs="i". For example, the call

> plot.window(xlim=c(0,1), ylim=c(10,20), xaxs="i")

produces a plot with 0 lying at the extreme left of the plot region and 1 lying at the
extreme right.

The "i" is an abbreviation for internal. The standard style of axis can be set with
xaxs="r" and yaxs="r". In this case the "r" is an abbreviation for regular.



36 Chapter 3. Graphics with R

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Figure 3.4: A plot produced with the lines function.

3.5 Drawing Line Graphs and Curves

If we have a vectors containing the x and y coordinates of a set of points, we can draw a
series of line segments connecting these points using the lines function. For example,
we can join points �

1 � 0 � �

�
2 � 2 � �

�
3 � 1 � �

�
4 � 3 �

as follows

> plot.new()
> plot.window(xlim=c(1,4), ylim=c(0,3))
> x = c(1,2,3,4)
> y = c(0,2,1,3)
> lines(x, y)
> axis(1)
> axis(2)
> box()

The results are shown in figure 3.4.



3.5. Drawing Line Graphs and Curves 37

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 3.5: The probability density function of the normal distribution.

One of the most common graphics tasks is to draw the graph of y � f
�
x � over an

interval
�
a � b � . One way to do this is to approximate the graph by a series of straight line

segments. For example, we could draw a graph of the density of the normal distribution
as follows.

> x = seq(-3, 3, length=1000)
> y = dnorm(x)
> plot.new()
> plot.window(xlim=range(x), ylim=range(y))
> lines(x, y)
> axis(1)
> axis(2)
> box()

The choice to approximate the curve by 1000 lines segments is and arbitrary one.
Generally the number of approximating lines segments must be obtained by trial and
error.

In some cases the function to be graphed has discontinuities. An example of this
is the function function f

�
x � � 1 � x over the interval

���
4 � 4 � . To draw this function we



38 Chapter 3. Graphics with R

−4 −2 0 2 4

−
4

−
2

0
2

4

A Graph of 1/x

x

y

Figure 3.6: A graph of f
�
x � � 1 � x.

must handle the discontinuity which occurs at x � 0. One approach to this problem is
to handle each side of the discontinuity separately. Another is to ensure that the values
passed to lines include an NA value at the discontinuity. The graph in figure 3.6 is
created with the following code.

> x = seq(-5, 5, length=1001)
> y = 1/x
> plot.new()
> plot.window(xlim=c(-4, 4), ylim=c(-4, 4))
> lines(x, y)
> abline(h=0, v=0, lty="11")
> axis(1)
> axis(2)
> box()
> title(main="A Graph of 1/x", xlab="x", ylab="y")

By choosing an odd number of values in the sequence from
�

5 to 5 we ensure that
1 � x is evaluated at x � 0. This introduces an NA value in y which in turn produces the
appropriate discontinuity in the graph.



3.6. An Example: Filling Areas In Line Graphs 39

1920 1930 1940 1950 1960 1970

48

50

52

54

Average Yearly Temperature In New Haven

D
eg

re
es

 F
ah

re
nh

ei
t

Year

Figure 3.7: A custom-built time series plot.

3.6 An Example: Filling Areas In Line Graphs

To illustrate the flexibility of the functionality we have described in this chapter con-
sider how we might go about producing the graph shown in figure 3.7. The graph is
based on the yearly average temperature in New Haven Connecticut from 1920 to 1970.
The values are as follows:

> y
[1] 49.3 51.9 50.8 49.6 49.3 50.6 48.4 50.7 50.9
[10] 50.6 51.5 52.8 51.8 51.1 49.8 50.2 50.4 51.6
[19] 51.8 50.9 48.8 51.7 51.0 50.6 51.7 51.5 52.1
[28] 51.3 51.0 54.0 51.4 52.7 53.1 54.6 52.0 52.0
[37] 50.9 52.6 50.2 52.6 51.6 51.9 50.5 50.9 51.7
[46] 51.4 51.7 50.8 51.9 51.8 51.9

To create the plot we will need to generate the corresponding sequence of year values.

> x = 1920:1970

Now we can set about creating the plot.



40 Chapter 3. Graphics with R

To begin, we must make some decisions about what ranges of values the plot re-
gion should represent. Clearly the time interval is

�
1920 � 1970 � and we can take the

temperature range to be
�
46 � 5 � 55 � 5 � .

We set up the plot range as follows

> plot.new()
> plot.window(xlim=c(1920,1970), xaxs="i",
+ ylim=c(46.5,55.5), yaxs="i")

Note that we are using internal axes. This is so the coloured area in the plot will extend
all the way to the edges of the plot region.

This is appropriate time to draw the background grid because the contents of the
graph are going to be drawn over it. The grid lines are made gray so that they don’t
dominate the plot.

> abline(v=seq(1930, 1960, by=10), col="gray")
> abline(h=seq(48, 54, by=2), col="gray")

Next we have to construct the polygon representing the shaded area in the graph.
We can do this by taking the sequence of coordinates in the x and y variables and
adding the point

�
1920 � 46 � 5 � at the start and

�
1970 � 46 � 5 � at the end.

> xx = c(1920, x, 1970)
> yy = c(46.5, y, 46.5)
> polygon(xx, yy, col="gray")

The last steps are to add the axes, the box sourrounding the plot, the axis annotation
and the plot title.

> axis(1)
> axis(2, las=1)
> box()
> title(main = "Average Yearly Temperature In New Haven")
> title(ylab = "Degrees Fahrenheit")
> title(xlab = "Year")

3.7 High Level Graphics

The previous section has shown how flexible the low-level graphics capabilities of R
are. R also has a higher-level set of graphics functions which make it possible to
produce complex graphics with a single function call. The high level function which
produces graphs is called plot. Given a set of x and y coordinates, plot can be used
to produce a variety of plots. All these variants can be customised with the following
optional plot arguments.

xlim=
ylim=

These arguments set the ranges on the x and y axes as they do for
the low level function plot.window. Each of xlim and ylim
must be a numeric vector of two values.

xaxs=
yaxs=

These arguments set the axis styles for the x and y axes as they
do for plot.window. They can take the value "i" for internal
axes and "r" for regular axes.



3.7. High Level Graphics 41

asp= The aspect ratio for the plot, as specified for plot.window.

axes= A value which can be TRUE or FALSE. if it is TRUE (the default),
then x and y axes and a surrounding box are drawn for the plot.
If FALSE, neither the axes nor surrouning box are drawn.

xlab=
ylab=

Labels for the x axis, y axis of the plot can be specified with
these arguments. By default, the labels that are printed are the
expression which were passed as the arguments to plot. To
inhibit the labelling of the axes xlab and ylab must be set to
the empty string "".

main= An overall title for the plot.

3.7.1 Scatter Plots

The simplest use of plot is to produce a scatter plot of points. The form of this simple
call is:

> plot(x, y)

A variety of optional arguments can be used to customise the plot.

pch=
col=

These arguments set the plotting symbol and colour for the
points in the same was as the corresponding arguments for the
function points. By using vectors of values it is possible to
specify the plotting symbol and colour separately for each point.

3.7.2 Line Plots

Line plots can be produces by plot by specifying the optional argument type="l".

> plot(x, y, type="l")

The following optional arguments can be used to customise the plot.

col=
lty=
lwd=

These arguments set the line texture, line width and colour for
the line drawn on the plot. Since only one line is drawn on
the plot, it only makes sense to pass a single value for these
arguments.

3.7.3 High Density Needle Plots

Needle plots consist of a series of vertical lines drawn from the line y � 0 to the points
passed as arguments to plot. They are produced by specifying the optional argument
type="h".

> plot(x, y, type="h")

The following optional arguments can be used to customise the plot.

col=
lty=
lwd=

These arguments set the line texture, line width and colour for
the line drawn on the plot. Since only one line is drawn on
the plot, it only makes sense to pass a single value for these
arguments.



42 Chapter 3. Graphics with R

3.7.4 Empty Plots

Empty plots can also be produced with a call to plot. This is done by specifying the
optional argument type="n").

> plot(x, y, type="n")

The effect of this call is to set up the coordinates for the plots and to draw the axes and
annotation in the margins. The main use for this is to set up plots which can then have
custom graphs drawn in them.

3.7.5 Other Plots

The type= argument can also be used to produce several other types of plot. The values
"b" and "o" produce scatter plots where the points in the plot are joined by lines. In
the case of "b" the lines are broken so that they do not touch the plotting symbols at
the points, and in the case of "o", the lines pass through the points.

The values "S" and "s" produce step functions. These are rather less useful (and
less used) than the other options.


